Skip to main content
Log in

Electron correlation effects and density analysis of the first-order hyperpolarizability of neutral guanine tautomers

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Dipole moments (μ), charge distributions, and static electronic first-order hyperpolarizabilities (β μ ) of the two lowest-energy keto tautomers of guanine (7H and 9H) were determined in the gas phase using Hartree–Fock, Møller–Plesset perturbation theory (MP2 and MP4), and DFT (PBE1PBE, B97-1, B3LYP, CAM-B3LYP) methods with Dunning’s correlation-consistent aug-cc-pVDZ and d-aug-cc-pVDZ basis sets. The most stable isomer 7H exhibits a μ value smaller than that of the 9H form by a factor of ca. 3.5. The β μ value of the 9H tautomer is strongly dependent on the computational method employed, as it dramatically influences the β μ (9H)/β μ (7H) ratio, which at the highest correlated MP4/aug-cc-pVDZ level is predicted to be ca. 5. The Coulomb-attenuating hybrid exchange-correlation CAM-B3LYP method is superior to the conventional PBE1PBE, B3LYP, and B97-1 functionals in predicting the β μ values. Differences between the largest diagonal hyperpolarizability components were clarified through hyperpolarizability density analyses. Dipole moment and first-order hyperpolarizability are molecular properties that are potentially useful for distinguishing the 7H from the 9H tautomer.

Hyperpolarizability density analysis of the most stable guanine tautomer

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3
Fig. 4
Fig. 5a–b

Similar content being viewed by others

References

  1. Lin J, Miller J, Miller E (1977) 2,3-Dihydro-2-(guan-7-yl)-3-hydroxy-aflatoxin B1, a major acid hydrolysis product of aflatoxin B1-DNA or -ribosomal RNA adducts formed in hepatic microsome-mediated reactions and in rat liver in vivo. Cancer Res 37:4430–4438

    CAS  Google Scholar 

  2. Bailey EA, Iyer RS, Harris TM, Essigmann JM (1996) A viral genome containing an unstable aflatoxin B1-N7-guanine DNA adduct situated at a unique site. Nucl Acids Res 24:2821–2828

    Article  CAS  Google Scholar 

  3. Watson JD, Crick FH (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  Google Scholar 

  4. Topal MD, Fresco JR (1976) Complementary base pairing and the origin of substitution mutations. Nature 263:285–289

    Article  CAS  Google Scholar 

  5. Harris VH, Smith CL, Cummins WJ, Hamilton AL, Adams H, Dickman M, Hornby DP, Williams DM (2003) The effect of tautomeric constant on the specificity of nucleotide incorporation during DNA replication: support for the rare tautomer hypothesis of substitution. J Mol Biol 326:1389–1401

    Article  CAS  Google Scholar 

  6. Hanus M, Ryjacek F, Kabelac M, Kubar T, Bogdan TV, Trygubenko SA, Hobza P (2003) Correlated ab initio study of nucleic acid bases and their tautomers in the gas phase, in a microhydrated environment and in aqueous solution. Guanine: surprising stabilization of rare tautomers in aqueous solution. J Am Chem Soc 125:7678–7688

    Google Scholar 

  7. Nir E, Janzen C, Imhof P, Kleinermanns K, de Vries MS (2001) Guanine tautomerism revealed by UV–UV and IR–UV hole burning spectroscopy. J Chem Phys 115:4604–4611

    Article  CAS  Google Scholar 

  8. Shukla MK, Leszczynski J (2006) Spectral origins and ionization potentials of guanine tautomers: theoretical elucidation of experimental findings. Chem Phys Lett 429:261–265

    Google Scholar 

  9. Seefeld K, Brause R, Häber T, Kleinermanns K (2007) Imino tautomers of gas-phase guanine from mid-infrared laser spectroscopy. J Phys Chem A 111:6217–6221

    Article  CAS  Google Scholar 

  10. Kushwaha PS, Kumar A, Mishra PC (2004) Electronic transitions of guanine tautomers, their stacked dimers, trimers and sodium complexes. Spectrochim Acta A 60:719–728

    Article  CAS  Google Scholar 

  11. Piacenza M, Grimme S (2004) Systematic quantum chemical study of DNA-base tautomers. J Comput Chem 25:83–99

    Article  CAS  Google Scholar 

  12. Haranczyk M, Gutowski M (2005) Valence and dipole-bound anions of the most stable tautomers of guanine. J Am Chem Soc 127:699–706

    Article  CAS  Google Scholar 

  13. Jang YH, Goddard WA III, Noyes KT, Sowers LC, Hwang S, Chung DS (2003) pK a values of guanine in water: density functional theory calculations combined with Poisson–Boltzmann continuum–solvation model. J Phys Chem B 107:344–357

    Article  CAS  Google Scholar 

  14. Shukla MK, Leszczynski J (2005) Excited state proton transfer in guanine in the gas phase and in water solution: a theoretical study. J Phys Chem A 109:7775–7780

    Article  CAS  Google Scholar 

  15. Bravaya KB, Kostko O, Dolgikh S, Landau A, Ahmed M, Krylov AI (2010) Electronic structure and spectroscopy of nucleic acid bases: ionization energies, ionization-induced structural changes, and photoelectron spectra. J Phys Chem A 114:12305–12317

    Article  CAS  Google Scholar 

  16. Mennucci B, Toniolo A, Tomasi J (2001) Theoretical study of guanine from gas phase to aqueous solution: role of tautomerism and its implications in absorption and emission spectra. J Phys Chem A 105:7126–7134

    Google Scholar 

  17. Jones DB, Wang F, Winkler DA, Brunger MJ (2006) Orbital based electronic structural signatures of the guanine keto G-7H/G-9H tautomer pair as studied using dual space analysis. Biophys Chem 121:105–120

    Article  CAS  Google Scholar 

  18. Gorb L, Kaczmarek A, Gorb A, Sadlej AJ, Leszczynski J (2005) Thermodynamics and kinetics of intramolecular proton transfer in guanine. Post Hartree–Fock study. J Phys Chem B 109:13770–13776

    Google Scholar 

  19. Liang W, Li H, Hu X, Han S (2006) Systematic theoretical investigations on all of the tautomers of guanine: from both dynamics and thermodynamics viewpoint. Chem Phys 328:93–102

    Google Scholar 

  20. Mons M, Dimicoli I, Piuzzi F, Tardivel B, Elhanine M (2002) Tautomerism of the DNA base guanine and its methylated derivatives as studied by gas-phase infrared and ultraviolet spectroscopy. J Phys Chem A 106:5088–5094

    Article  CAS  Google Scholar 

  21. Chin W, Mons M, Dimicoli I, Piuzzi F, Tardivel B, Elhanine M (2002) Tautomer contributions to the near UV spectrum of guanine: towards a refined picture for the spectroscopy of purine molecules. Eur Phys J D 20:347–355

    Article  CAS  Google Scholar 

  22. Sheina GG, Stepanian SG, Radchenko ED, Blagoi YP (1987) IR spectra of guanine and hypoxanthine isolated molecules. J Mol Struct 158:275–292

    Article  CAS  Google Scholar 

  23. Choi MY, Miller RE (2006) Four tautomers of isolated guanine from infrared laser spectroscopy in helium nanodroplets. J Am Chem Soc 128:7320–7328

    Google Scholar 

  24. Nir E, Plutzer C, Kleinermanns K, de Vries M (2002) Properties of isolated DNA bases, base pairs and nucleosides examined by laser spectroscopy. Eur Phys J D 20:317–329

    Article  CAS  Google Scholar 

  25. Nir E, Grace L, Brauer B, de Vries MS (1999) REMPI spectroscopy of jet-cooled guanine. J Am Chem Soc 121:4896–4897

    Article  CAS  Google Scholar 

  26. Nir E, Kleinermanns K, Grace L, de Vries MS (2001) On the photochemistry of purine nucleobases. J Phys Chem A 105:5106–5110

    Article  CAS  Google Scholar 

  27. Piuzzi F, Mons M, Dimicoli I, Tardivel B, Zhao Q (2001) Ultraviolet spectroscopy and tautomerism of the DNA base guanine and its hydrate formed in a supersonic jet. Chem Phys 270:205–214

    Article  CAS  Google Scholar 

  28. Chin W, Mons M, Piuzzi F, Tardivel B, Dimicoli I, Gorb L, Leszczynski J (2004) Gas phase rotamers of the nucleobase 9-methylguanine enol and its monohydrate: optical spectroscopy and quantum mechanical calculations. J Phys Chem A 108:8237–8243

    Article  CAS  Google Scholar 

  29. Mons M, Piuzzi F, Dimicoli I, Gorb L, Leszczynski J (2006) Near-UV resonant two-photon ionization spectroscopy of gas phase guanine: evidence for the observation of three rare tautomers. J Phys Chem A 110:10921–10924

    Article  CAS  Google Scholar 

  30. Steckl AJ (2007) DNA—a new material for photonics? Nature Photon 1:3–5

    Google Scholar 

  31. Guerra CF, van der Wijst T, Bickelhaupt FM (2006) Nanoswitches based on DNA base pairs: why adenine–thymine is less suitable than guanine–cytosine. Chem Phys Chem 7:1971–1979

    Google Scholar 

  32. Endres RG, Cox DL, Singh RRP (2004) The quest for high-conductance DNA. Rev Mod Phys 76:195–214

    Article  CAS  Google Scholar 

  33. Yan H, Zhang X, Shen Z, Seeman NE (2002) A robust DNA mechanical device controlled by hybridization topology. Nature 415:62–65

    Article  CAS  Google Scholar 

  34. Porath D, Cuniberti G, Felice RD (2004) Charge transport in DNA based devices. In: Schuster G (ed) Long range charge transfer in DNA. Topics in current chemistry, vol 237. Springer, Heidelberg, pp 183–227

  35. Coehn H, Nogues C, Naaman R, Porath D (2005) Direct measurement of electrical transport through single DNA molecules of complex sequence. Proc Natl Acad Sci USA 102:11589–11593

    Article  Google Scholar 

  36. Di Felice R, Calzolari A, Molinari E, Garbesi A (2002) Ab initio study of model guanine assemblies: the role of π–π coupling and band transport. Phys Rev B 65:045104–045113

    Google Scholar 

  37. Cohen H, Sapir T, Borovok N, Molotsky T, Di Felice R, Kotlyar AB, Porath D (2007) Polarizability of G4-DNA observed by electrostatic force microscopy measurements. Nano Lett 7:981–986

    Article  CAS  Google Scholar 

  38. Wang L, Yoshida J, Ogata N (2001) Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties. Chem Mater 13:1273–1281

    Google Scholar 

  39. Grote JG, Hagen JA, Zetts JS, Nelson RL, Diggs DE, Stone MO, Yaney PP, Heckman E, Zhang C, Steier WH, Jen AK-Y, Dalton LR, Ogata N, Curley MJ, Clarson SJ, Hopkins FK (2004) Investigation of polymers and marine-derived DNA in optoelectronics. J Phys Chem B 108:8584–8591

    Article  CAS  Google Scholar 

  40. Bottcher CFJ (1952) Theory of electric polarization. Elsevier, Amsterdam

    Google Scholar 

  41. Haley TP, Graybill ER, Cybulski SM (2006) Ab initio calculations of dispersion coefficients for nucleic acid base pairs. J Chem Phys 124:204301, 1–7

    Google Scholar 

  42. Campos CT, Jorge FE (2009) Basis set convergence of electric properties in HF and DFT calculations of nucleic acid bases. Int J Quantum Chem 109:285–293

    Article  CAS  Google Scholar 

  43. Labello NP, Ferreira AM, Kurtz HA (2005) An augmented effective core potential basis set for the calculation of molecular polarizabilities. J Comput Chem 26:1464–1471

    Article  CAS  Google Scholar 

  44. Jasien PG, Fitzgerald G (1990) Molecular dipole moments and polarizabilities from local density functional calculations: application to DNA base pairs. J Chem Phys 93:2554–2560

    Google Scholar 

  45. Johnson RC, Power TD, Holt JS, Immaraporn B, Monat JE, Sissoko AA, Yanik MM, Zagorodny AV, Cybulski SM (1996) Electron-correlated calculations of electric properties of nucleic acid bases. J Phys Chem 100:18875–18881

    Article  CAS  Google Scholar 

  46. Basch H, Garmer DR, Jasien PG, Krauss M, Stevens WJ (1989) Electrical properties of nucleic acid bases. Chem Phys Lett 163:514–522

    Article  CAS  Google Scholar 

  47. Alparone (2013) Linear and nonlinear optical properties of nucleic acid bases. Chem Phys 410:90–98

    Article  CAS  Google Scholar 

  48. Salafsky JS (2003) Second-harmonic generation as a probe of conformational change in molecules. Chem Phys Lett 381:705–709

    Article  CAS  Google Scholar 

  49. Sliwa M, Nakatani K, Asahi T, Lacroix PG, Pansu RB, Masuhara H (2007) Polarization and wavelength dependent nonlinear optical properties of a photo-switchable organic crystal. Chem Phys Lett 437:212–217

    Article  CAS  Google Scholar 

  50. Sliwa M, Létard S, Malfant I, Nierlich M, Lacroix PG, Asahi T, Masuhara H, Yu P, Nakatani K (2005) Design, synthesis, structural and nonlinear optical properties of photochromic crystals: toward reversible molecular switches. Chem Mater 17:4727–4735

    Google Scholar 

  51. Alparone A (2012) Dipole (hyper)polarizabilities of fluorinated benzenes: an ab initio investigation. J Fluorine Chem 144:94–101

    Google Scholar 

  52. Velders GJM, Gillet JM, Becker PJ, Feil D (1991) Electron density analysis of nonlinear optical materials: an ab initio study of different conformations of benzene derivatives. J Phys Chem 95:8601–8608

    Article  CAS  Google Scholar 

  53. Hendrickx E, Clays K, Persoons A, Dehu C, Bredas JL (1995) The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties. J Am Chem Soc 117:3547–3555

    Google Scholar 

  54. Alparone A, Millefiori A, Millefiori S (2005) Electronic dipole polarizability and hyperpolarizability of formic acid. Chem Phys Lett 409:288–294

    Article  CAS  Google Scholar 

  55. Niewodniczański W, Bartkowiak W (2007) Theoretical study of geometrical and nonlinear optical properties of pyridinum N-phenolate betaine dyes. J Mol Model 13:793–800

    Article  Google Scholar 

  56. Xu H-L, Li Z-R, Su Z-M, Muhammad S, Gu FL, Harigaya K (2009) Knot-isomers of Mobius cyclacene: how does the number of knots influence the structure and first hyperpolarizability? J Phys Chem C 113:15380–15383

    Google Scholar 

  57. Plaquet A, Champagne B, Castet F, Ducasse L, Bogdan E, Rodriguez V, Pozzo J-L (2009) Theoretical investigation of the dynamic first hyperpolarizability of DHA-VHF molecular switches. New J Chem 33:1349–1356

    Article  CAS  Google Scholar 

  58. Lipiński J, Bartkowiak W (1999) Conformation and solvent dependence of the first and second molecular hyperpolarizabilities of charge-transfer chromophores. Quantum-chemical calculations. Chem Phys 245:263–276

    Article  Google Scholar 

  59. Seal P, Jha PC, Chakrabarti S (2008) Static first order hyperpolarizabilities of DNA base pairs: a configuration interaction study. J Mol Struct (THEOCHEM) 855:64–68

    Google Scholar 

  60. Champagne B, Perpete EA, van Gisbergen SJA, Baerends E-J, Snijders JG, Soubra-Ghaoui C, Robins KA, Kirtman B (1998) Assessment of conventional density functional schemes for computing the polarizabilities and hyperpolarizabilities of conjugated oligomers: an ab initio investigation of polyacetylene chains. J Chem Phys 109:10489–10498

    Google Scholar 

  61. Kamiya M, Sekino H, Tsuneda T, Hirao K (2005) Nonlinear optical property calculations by the long-range-corrected coupled-perturbed Kohn–Sham method. J Chem Phys 122:234111, 1–10, and references therein

  62. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Google Scholar 

  63. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Google Scholar 

  64. Perdew JP (1997) Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 78:1396–1396

    Article  CAS  Google Scholar 

  65. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) Development and assessment of new exchange-correlation functional. J Chem Phys 109:6264–6271

    Article  CAS  Google Scholar 

  66. Yanai T, Tew D, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  67. Jacquemin D, Perpète EA, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) Assessment of the efficiency of long-range corrected functionals for some properties of large compounds. J Chem Phys 126:144105, 1-12

    Article  Google Scholar 

  68. Limacher PA, Mikkelsen KV, Lüthi HP (2009) On the accurate calculation of polarizabilities and second hyperpolarizabilities of polyacetylene oligomer chains using the CAM-B3LYP density functional. J Chem Phys 130:194114, 1-7

    Article  Google Scholar 

  69. Nakano M, Minami T, Fukui H, Yoneda K, Shigeta Y, Kishi R, Champagne B, Botek E (2010) Approximate spin-projected spin-unrestricted density functional theory method: application to the diradical character dependences of the (hyper)polarizabilities in p-quinodimethane models. Chem Phys Lett 501:140–145

    Google Scholar 

  70. Alparone A (2011) Comparative study of CCSD(T) and DFT methods: electronic (hyper)polarizabilities of glycine. Chem Phys Lett 514:21–25

    Google Scholar 

  71. Zhang C-C, Xu H-L, Hu Y-Y, Sun S-L, Su Z-M (2011) Quantum chemical research on structures, linear and nonlinear optical properties of the Li@n-acenes salt (n = 1, 2, 3, and 4). J Phys Chem A 115:2035–2040

    Google Scholar 

  72. Alparone A (2012) Structural, energetic and response electric properties of cyclic selenium clusters: an ab initio and density functional theory study. Theor Chem Acc 131:1239, 1–14

    Google Scholar 

  73. Alparone A, Librando V (2012) Physicochemical characterization of environmental mutagens: 3-nitro-6-azabenzo[a]pyrene and its N-oxide derivative. Monatsh Chem 143:1123–1132

    Article  CAS  Google Scholar 

  74. Krawczyk P (2010) DFT study of linear and nonlinear optical properties of donor–acceptor substituted stilbenes, azobenzenes and benzilideneanilines. J Mol Model 16:659–668

    Google Scholar 

  75. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian Inc., Wallingford

  76. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  77. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  78. Burcl R, Handy NC, Carter S (2003) Vibrational spectra of furan, pyrrole, and thiophene from a density functional theory anharmonic force field. Spectrochim Acta A 59:1881–1893

    Article  Google Scholar 

  79. Millefiori S, Alparone A (2004) Tautomerism and polarizability in uracil: coupled cluster and density-functional theory study. Chem Phys 303:27–36

    Google Scholar 

  80. Alparone A, Millefiori A, Millefiori S (2005) Non-planarity and solvent effects on structural and polarizability properties of cytosine tautomers. Chem Phys 312:261–274

    Article  CAS  Google Scholar 

  81. Clowney L, Jain SC, Srinivasan AR, Westbrook J, Olson WK, Berman HM (1996) Geometric parameters in nucleic acids: nitrogenous bases. J Am Chem Soc 118:509–518

    Article  CAS  Google Scholar 

  82. Karna SP, Dupuis M (1991) Frequency dependent nonlinear optical properties of molecules: formulation and implementation in the HONDO program. J Comput Chem 12:487–504

    Article  CAS  Google Scholar 

  83. Kurtz HA, Stewart JJP, Dieter KM (1990) Calculation of the nonlinear optical properties of molecules. J Comput Chem 11:82–87

    Article  CAS  Google Scholar 

  84. Woon DE, Dunning TH (1994) Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J Chem Phys 100:2975–2988

    Article  CAS  Google Scholar 

  85. Alparone A (2011) Theoretical study of the electronic (hyper)polarizabilities of amino acids in gaseous and aqueous phases. Comput Theor Chem 976:188–190

    Article  CAS  Google Scholar 

  86. Alparone A (2012) Corrigendum to “Theoretical study of the electronic (hyper)polarizabilities of amino acids in gaseous and aqueous phases” [Comput. Theor. Chem. 976 (2011) 188–190]. Comput Theor Chem 980:144–144

    Article  CAS  Google Scholar 

  87. Millefiori S, Alparone A (1998) Ab initio and density functional theory calculations of the dipole polarizabilities of ethene, benzene and naphthalene. J Mol Struct (THEOCHEM) 422:179–190

    Article  CAS  Google Scholar 

  88. Librando V, Alparone A, Minniti Z (2008) Computational study on dipole moment, polarizability and second hyperpolarizability of nitronaphthalenes. J Mol Struct (THEOCHEM) 856:105–111

    Article  CAS  Google Scholar 

  89. Millefiori S, Alparone A, Millefiori A, Vanella A (2008) Electronic and vibrational polarizabilities of the twenty naturally occurring amino acids. Biophys Chem 132:139–147

    Article  CAS  Google Scholar 

  90. Párkányi C, Boniface C, Aaron J-J, Bulaceanu-MacNairb M, Dakkouri M (2002) Theoretical and experimental dipole moments of purines. Collect Czech Chem Commun 67:1109–1124

    Article  Google Scholar 

  91. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  92. Nakano M, Shigemoto I, Yamada S, Yamaguchi K (1995) Size–consistent approach and density analysis of hyperpolarizability: second hyperpolarizabilities of polymeric systems with and without defects. J Chem Phys 103:4175–4191

    Google Scholar 

  93. Yamada S, Nakano M, Shigemoto I, Kiribayashi S, Yamaguchi K (1997) Intense electron correlation dependence of the first hyperpolarizabilities β of a nitroxide radical and formaldehyde. Chem Phys Lett 267:445–451

    Article  CAS  Google Scholar 

  94. Nakano M, Ohta S, Tokushima K, Kishi R, Kubo T, Kamada K, Ohta K, Champagne B, Botek E, Takahashi H (2007) First and second hyperpolarizabilities of donor–acceptor disubstituted diphenalenyl radical systems. Chem Phys Lett 443:95–101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Alparone.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alparone, A. Electron correlation effects and density analysis of the first-order hyperpolarizability of neutral guanine tautomers. J Mol Model 19, 3095–3102 (2013). https://doi.org/10.1007/s00894-013-1838-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1838-4

Keywords

Navigation