Skip to main content
Log in

Effects of water content on the tetrahedral intermediate of chymotrypsin - trifluoromethylketone in polar and non-polar media: observations from molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The work uses MD simulation to study effects of five water contents (3 %, 10 %, 20 %, 50 %, 100 % v/v) on the tetrahedral intermediate of chymotrypsin - trifluoromethyl ketone in polar acetonitrile and non-polar hexane media. The water content induced changes in the structure of the intermediate, solvent distribution and H-bonding are analyzed in the two organic media. Our results show that the changes in overall structure of the protein almost display a clear correlation with the water content in hexane media while to some extent U-shaped/bell-shaped dependence on the water content is observed in acetonitrile media with a minimum/maximum at 10–20 % water content. In contrast, the water content change in the two organic solvents does not play an observable role in the stability of catalytic hydrogen-bond network, which still exhibits high stability in all hydration levels, different from observations on the free enzyme system [Zhu L, Yang W, Meng YY, Xiao X, Guo Y, Pu X, Li M (2012) J Phys Chem B 116(10):3292–3304]. In low hydration levels, most water molecules mainly distribute near the protein surface and an increase in the water content could not fully exclude the organic solvent from the protein surface. However, the acetonitrile solvent displays a stronger ability to strip off water molecules from the protein than the hexane. In a summary, the difference in the calculated properties between the two organic solvents is almost significant in low water content (<10 %) and become to be small with increasing water content. In addition, some structural properties at 10 ~ 20 % v/v hydration zone, to large extent, approach to those in aqueous solution.

The work uses MD simulation to study effects of five water contents on the tetrahedral intermediate of chymotrypsin-trifluoromethyl ketone in polar acetonitrile and non-polar hexane media. The water content induced changes in the structure of the intermediate, solvent distribution and H-bonding was discussed in the two organic media

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gupta MN, Roy I (2004) Enzymes in organic media. Eur J Biochem 271(13):2575–2583

    Article  CAS  Google Scholar 

  2. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409(6817):241–246

    Article  CAS  Google Scholar 

  3. Cabral JMS, Aires-Barros MR, Pinheiro H, Prazeres DMF (1997) Biotransformation in organic media by enzymes and whole cells. J Biotechnol 59(1–2):133–143

    Article  CAS  Google Scholar 

  4. Partridge J, Moore BD, Halling PJ (1999) α-Chymotrypsin stability in aqueous-acetonitrile mixtures: is the native enzyme thermodynamically or kinetically stable under low water conditions? J Mol Catal B Enzym 6(1–2):11–20

    Article  CAS  Google Scholar 

  5. Anthonsen T, Sjurnes BJ (2000) In: Gupta MN (ed) Methods in Nonaqueous Enzymology. Birkhäuser, Basel

    Google Scholar 

  6. Castro GR (2000) Properties of soluble α-chymotrypsin in neat glycerol and water. Enzym Microb Technol 27(1–2):143–150

    Article  CAS  Google Scholar 

  7. Simon LM, Kotormán M, Maráczi K, László K (2000) N-acetyl-l-arginine ethyl ester synthesis catalysed by bovine trypsin in organic media. J Mol Catal B Enzym 10(6):565–570

    Article  CAS  Google Scholar 

  8. Soares CM, Teixeira VH, Baptista AM (2003) Protein structure and dynamics in nonaqueous solvents: insights from molecular dynamics simulation studies. Biophys J 84(3):1628–1641

    Article  CAS  Google Scholar 

  9. Clark DS (2004) Characteristics of nearly dry enzymes in organic solvents: implications for biocatalysis in the absence of water. Philos Trans R Soc Lond B 359(1448):1299–1307

    Article  CAS  Google Scholar 

  10. Diaz-Vergara N, Piñeiro Á (2008) Molecular dynamics study of triosephosphate isomerase from trypanosoma cruzi in water/decane mixtures. J Phys Chem B 112(11):3529–3539

    Article  CAS  Google Scholar 

  11. Hudson EP, Eppler RK, Clark DS (2005) Biocatalysis in semi-aqueous and nearly anhydrous conditions. Curr Opin Biotechnol 16(6):637–643

    Article  CAS  Google Scholar 

  12. Branco RJF, Graber M, Denis V, Pleiss J (2009) Molecular mechanism of the hydration of candida antarctica lipase B in the gas phase: water adsorption isotherms and molecular dynamics simulations. ChemBioChem 10(18):2913–2919

    Article  CAS  Google Scholar 

  13. Kijima T, Yamamoto S, Kise H (1996) Study on tryptophan fluorescence and catalytic activity of α-chymotrypsin in aqueous-organic media. Enzym Microb Technol 18(1):2–6

    Article  CAS  Google Scholar 

  14. Simon LM, Kotormán M, Garab G, Laczkó I (2001) Effects of polyhydroxy compounds on the structure and activity of α-chymotrypsin. Biochem Biophys Res Commun 293(1):416–420

    Article  Google Scholar 

  15. Luo Q, Han WW, Zhou YH, Li ZS (2008) The 3D structure of the defense-related rice protein Pir7b predicted by homology modeling and ligand binding studies. J Mol Model 14(7):559–569

    Article  CAS  Google Scholar 

  16. Da LT, Wang D, Huang X (2012) Dynamics of pyrophosphate lon release and its coupled trigger loop motion from closed to open state in RNA polymerase II. J Am Chem Soc 134(4):2399–2406

    Article  CAS  Google Scholar 

  17. Yang MJ, Pang XQ, Zhang X, Han KL (2011) Molecular dynamics simulation reveals preorganization of the chloroplast FtsY towards complex formation induced by GTP binding. J Struct Biol 173(1):57–66

    Article  CAS  Google Scholar 

  18. Wu R, Xie H, Cao Z, Mo Y (2008) Combined quantum mechanics/molecular mechanics study on the reversible isomerization of glucose and fructose catalyzed by pyrococcus furiosus phosphoglucose isomerase. J Am Chem Soc 130(22):7022–7031

    Article  CAS  Google Scholar 

  19. Toba S, Hartsough DS (1996) Solvation and dynamics of chymotrypsin in hexane. J Am Chem Soc 118(27):6490–6498

    Article  CAS  Google Scholar 

  20. Micaelo NM, Teixeira VH, Baptista AM, Soares CM (2005) Water dependent properties of cutinase in nonaqueous solvents: a computational study of enantioselectivity. Biophys J 89(2):999–1008

    Article  CAS  Google Scholar 

  21. Micaelo NM, Soares CM (2007) Modeling hydration mechanisms of enzymes in nonpolar and polar organic solvents. FEBS J 274(9):2424–2436

    Article  CAS  Google Scholar 

  22. Rezaei-Ghaleh N, Amininasab M, Nemat-Gorgani M (2008) Conformational changes of α-chymotrypsin in a fibrillation-promoting condition: a molecular dynamics study. Biophys J 95(9):4139–4147

    Article  CAS  Google Scholar 

  23. Yang L, Dordick JS, Garde S (2004) Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity. Biophys J 87(2):812–821

    Article  CAS  Google Scholar 

  24. Trodler P, Pleiss J (2008) Modeling structure and flexibility of candida Antarctica lipase B in organic solvents. BMC Struct Biol 8:9

    Article  Google Scholar 

  25. Li C, Tan T, Zhang H, Feng W (2010) Analysis of the conformational stability and activity of candida antarctica lipase B in organic solvents. J Biol Chem 285(37):28434–28441

    Article  CAS  Google Scholar 

  26. Wedberg R, Abildskov J, Peters GH (2012) Protein dynamics in organic media at varying water activity studied by molecular dynamics simulation. J Phys Chem B 116(8):2575–2585

    Article  CAS  Google Scholar 

  27. Jing YQ, Han KL (2010) Quantum mechanical effect in protein-ligand interaction. Expert Opin Drug Discov 5(1):33–49

    Article  CAS  Google Scholar 

  28. Li DM, Wang Y, Han KL (2012) Recent density functional theory model calculations of drug metabolism by cytochrome P450. Coord Chem Rev 256(11–12):1137–1150

    Article  CAS  Google Scholar 

  29. Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102(12):4501–4523

    Article  CAS  Google Scholar 

  30. Westler WM, Weinhold F, Markley JL (2002) Quantum Chemical Calculations on Structural Models of the Catalytic Site of Chymotrypsin: Comparison of Calculated Results with Experimental Data from NMR Spectroscopy. J Am Chem Soc 124(48):14373–14381

    Article  CAS  Google Scholar 

  31. Molina PA, Jensen JH (2003) A predictive model of strong hydrogen bonding in proteins: the Nδ1 − H − Oδ1 hydrogen bond in low-pH α-chymotrypsin and α-lytic protease. J Phys Chem B 107(25):6226–6233

    Article  CAS  Google Scholar 

  32. Ishida T, Kato S (2003) Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process. J Am Chem Soc 125(39):12035–12048

    Article  CAS  Google Scholar 

  33. Shokhen M, Albeck A (2004) Is there a weak H-bond → LBHB transition on tetrahedral complex formation in serine proteases? Proteins: Struct Funct Bioinf 54(3):468–477

    Article  CAS  Google Scholar 

  34. Topf M, Richards WG (2004) Theoretical studies on the deacylation step of serine protease catalysis in the gas phase, in solution, and in elastase. J Am Chem Soc 126(44):14631–14641

    Article  CAS  Google Scholar 

  35. Shokhen M, Khazanov N, Albeck A (2007) The cooperative effect between active site ionized groups and water desolvation controls the alteration of acid/base catalysis in serine proteases. ChemBioChem 8(12):1416–1421

    Article  CAS  Google Scholar 

  36. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvary I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) Amber 10, 10th edn. University of California San Francisco, San Francisco

    Google Scholar 

  37. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012

    Article  CAS  Google Scholar 

  38. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  39. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  Google Scholar 

  40. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260

    Article  Google Scholar 

  41. Brady K, Wei A, Ringe D, Abeles RH (1990) Structure of chymotrypsin-trifluoromethyl ketone inhibitor complexes: comparison of slowly and rapidly equilibrating inhibitors. Biochemistry 29(33):7600–7607

    Article  CAS  Google Scholar 

  42. Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  43. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  44. Darden T, York D, Pedersen L (1993) Particle mesh ewald: an N-log(N) method for ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  45. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  46. Ulbert O, Bélafi-Bakó K, Tonova K, Gubicza L (2005) Thermal stability enhancement of Candida rugosa lipase using ionic liquids. Biocatal Biotransform 23(3–4):177–183

    Article  CAS  Google Scholar 

  47. Ulbert O, Fráter T, Bélafi-Bakó K, Gubicza L (2004) Enhanced enantioselectivity of Candida rugosa lipase in ionic liquids as compared to organic solvents. J Mol Catal B Enzym 31(1–3):39–45

    Article  CAS  Google Scholar 

  48. Zhu L, Yang W, Meng YY, Xiao X, Guo Y, Pu X, Li M (2012) Effects of organic solvent and crystal water on γ-chymotrypsin in acetonitrile media: observations from molecular dynamics simulation and DFT calculation. J Phys Chem B 116(10):3292–3304

    Article  CAS  Google Scholar 

  49. Nakagawa S, Yu HA, Karplus M, Umeyama H (1993) Active site dynamics of acyl-chymotrypsin. Proteins: Struct Funct Bioinf 16(1):172–194

    Article  CAS  Google Scholar 

  50. Kuszewski J, Gronenborn AM, Clore GM (1999) Improving the packing and accuracy of NMR structures with a pseudopotential for the radius of gyration. J Am Chem Soc 121(10):2337–2338

    Article  CAS  Google Scholar 

  51. Copeland RA (2000) Enzymes: a practical introduction to structure, mechanism, and data analysis. Wiley, New York

    Google Scholar 

  52. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graphics 14(1):33–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by the National Science Foundation of China (Grant No. 20973115, 21273154, U1230121) and the International Science and Technology Cooperation Foundation of Sichuan province (Grant No. 2011H0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Pu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, X., Jiang, L., Yuan, Y. et al. Effects of water content on the tetrahedral intermediate of chymotrypsin - trifluoromethylketone in polar and non-polar media: observations from molecular dynamics simulation. J Mol Model 19, 2525–2538 (2013). https://doi.org/10.1007/s00894-013-1807-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1807-y

Keywords

Navigation