Skip to main content
Log in

Is hyper-hardness more chemically relevant than expected?

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, the third derivative of the energy with respect to the number of electrons, the so-called hyper-hardness, is investigated to assess whether this quantity has a chemical meaning. To achieve this goal a new working expression for hyper-hardness is developed and analyzed. It transpired from this analysis that hyper-hardness, just like hardness, can measure the reactivity or the stability of electron systems. Interestingly, positive values of hyper-hardness point to quite stable species such as noble gases and molecules. On the other hand, radicals almost always display large negative values of hyper-hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pauling L (1932) J Am Chem Soc 54:3570–3582

    Article  CAS  Google Scholar 

  2. Jensen MQ (1996) J Chem Educ 73:11

    Article  CAS  Google Scholar 

  3. Iczkowski RP, Margrave JL (1961) J Am Chem Soc 83:3547–3551

    Article  CAS  Google Scholar 

  4. Parr RG, Donelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  5. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  6. Chermette H (1999) J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  7. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  8. Pearson RG (1968) J Chem Educ 45:981–984

    Google Scholar 

  9. Pearson RG (1997) Chemical Hardness. Wiley-VCH, Weinheim

    Book  Google Scholar 

  10. Chattaraj PK, Lee H, Parr RG (1991) J Am Chem Soc 113:1855–1856

    Article  CAS  Google Scholar 

  11. Ayers PW, Parr RG, Pearson RG (2006) J Chem Phys 124:194107

    Article  Google Scholar 

  12. Chattaraj PK, Ayers PW, Melin J (2007) Phys Chem Chem Phys 9:3853–3856

    Article  CAS  Google Scholar 

  13. Pearson RG (1968) J Chem Educ 45:581–586

    Article  CAS  Google Scholar 

  14. Huheey JE (1965) J Phys Chem 69:3284–3291

    Article  CAS  Google Scholar 

  15. Huheey JE, Watts JC (1971) Inorg Chem 10:1553–1554

    Article  CAS  Google Scholar 

  16. Politzer PJ (1987) Chem Phys 86:1072–1073

    CAS  Google Scholar 

  17. Politzer P, Huheey JE, Murray JS, Grodzicki MJ (1992) Mol Struct 259:99–120

    Article  Google Scholar 

  18. Huheey JE (1971) J Org Chem 36:204–205

    Article  CAS  Google Scholar 

  19. Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205–212

    Article  CAS  Google Scholar 

  20. Morell C, Grand A, Toro-Labbé A (2006) Chem Phys Lett 425:342–346

    Article  CAS  Google Scholar 

  21. Fuentealba P, Cedillo M (1999) J Chem Phys 110:9807–9811

    Article  CAS  Google Scholar 

  22. Geerlings P, De Proft F (2008) Phys Chem Chem Phys 10:3028–3042

    Article  CAS  Google Scholar 

  23. Chattaraj PK, Cedillo A, Parr RG (1995) J Chem Phys 103:7645–7646

    Article  CAS  Google Scholar 

  24. Parr RG, Fuentealba P (1991) J Chem Phys 94:5559–5564

    Article  Google Scholar 

  25. Senet P (1996) J Chem Phys 105:6471–6489

    Article  CAS  Google Scholar 

  26. Senet P (1997) J Chem Phys 107:2516–2524

    Article  CAS  Google Scholar 

  27. Dunlap BI (2008) J Chem Phys 129:244109

    Article  Google Scholar 

  28. Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  29. Morell C, Ayers PW, Grand A, Chermette H (2011) Phys Chem Chem Phys 13:9601–9608

    Article  CAS  Google Scholar 

  30. De Proft F, Geerlings P, Liu S, Parr RG (1999) Polish J Chem 72:1737–1746

    Google Scholar 

  31. Berkowitz M, Parr RG (1988) J Chem Phys 88:2554–2557

    Article  CAS  Google Scholar 

  32. Gutierrez-Oliva S, Jaque P, Toro-Labbé A (2000) J Phys Chem A 104:8955–8964

    Article  CAS  Google Scholar 

  33. See for instance CRC Handbook of Chemistry and Physics, CRC Press

  34. Giese B, He J, Mehl W (1988) Chem Ber 121:2063–2066

    Article  CAS  Google Scholar 

  35. Heberger K, Lopata A (1998) J Org Chem 63:8646–8653

    Article  CAS  Google Scholar 

  36. Wu JQ, Beranek I, Fisher H (1995) Helv Chim Acta 78:194–214

    Article  CAS  Google Scholar 

  37. De Vleeschouwer F, Van Speybroeck V, Waroquier M, Geerlings P, De Proft F (2007) Org Lett 9:2721–2724

    Article  Google Scholar 

Download references

Acknowledgments

All the authors thank the joint program between “Evaluation-orientation de la Coopération Scientifique” and “Comisión Nacional de Investigación Científica y Tecnológica” (ECOS-CONICYT (through action project n°C11E03. C.M. and A.G. thank “le Commissariat à l’Energie Atomtique” (CEA-Grenoble) and “Grand Equipement National de Calcul Intensif” (GENCI) through projects gen6836 and gen6834 for computational support. A.T.L. acknowledges support from “Fondo Nacional de Desarrollo Científico y Tecnológico” (FONDECYT) through project n° 1090460. H.C gratefully acknowledges the “Grand Equipement National de Calcul Intensif./Centre Informatique National de l’Enseignemenet Supérieur” (GENCI/CINES) for HPC resources/computer time (Project cpt2130). Finally the authors specially thank the reviewer for pointing out the discrepancy in electronegativity values.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Morell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morell, C., Grand, A., Toro-Labbé, A. et al. Is hyper-hardness more chemically relevant than expected?. J Mol Model 19, 2893–2900 (2013). https://doi.org/10.1007/s00894-013-1778-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1778-z

Keywords

Navigation