Skip to main content
Log in

Theoretical study on the functionalization of BC2N nanotube with amino groups

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Using density functional theory calculations, we investigated properties of a functionalized BC2N nanotube with NH3 and five other NH2-X molecules in which one of the hydrogen atoms of NH3 is substituted by X = −CH3, −CH2CH3, −COOH, −CH2COOH and −CH2CN functional groups. It was found that NH3 can be preferentially adsorbed on top of the boron atom, with adsorption energy of −12.0 kcal mol−1. The trend of adsorption-energy change can be correlated with the trend of relative electron-withdrawing or -donating capability of the functional groups. The adsorption energies are calculated to be in the range of −1.8 to −14.2 kcal mol−1, and their relative magnitude order is found as follows: H2N(CH2CH3) > H2N(CH3) > NH3 > H2N(CH2COOH) > H2N(CH2CN) > H2N(COOH). Overall, the functionalization of BC2N nanotube with the amino groups results in little change in its electronic properties. The preservation of electronic properties of BC2N coupled with the enhancement of solubility renders their chemical modification with either NH3 or amino functional groups to be a way for the purification of BC2N nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Sun SL, Hu YY, Xu HL, Su ZM, Hao LZ (2012) J Mol Model 18:3219–3225

    Article  CAS  Google Scholar 

  3. Politzer P, Murray JS, Lane P, Concha MC, Jin P, Peralta-Inga Z (2005) J Mol Model 11:258–264

    Article  CAS  Google Scholar 

  4. Chełmecka E, Pasterny K, Kupka T, Stobiński L (2012) J Mol Model 18:2241–2246

    Article  Google Scholar 

  5. Redlich P, Loeffler J, Ajayan PM, Bill J, Aldinger F, Ruhle M (1996) Chem Phys Lett 260:465–470

    Article  CAS  Google Scholar 

  6. Zhang Y, Gu H, Suenaga K, Iijima S (1997) Chem Phys Lett 279:264–269

    Article  CAS  Google Scholar 

  7. Zhang Y, Suenaga K, Colliex C, Iijima S (1998) Science 281:973–975

    Article  CAS  Google Scholar 

  8. Rossato J, Baierle RJ (2007) Phys Rev B 75:235401–235407

    Article  Google Scholar 

  9. Pan H, Feng YP, Lin JY (2006) Phys Rev B 73:035420–035425

    Article  Google Scholar 

  10. Hernndez E, Goze C, Bernier P, Rubio A (1998) Phys Rev Lett 80:4502–4505

    Article  Google Scholar 

  11. Sen R, Satishkumar BC, Govindaraj A, Harikumar KR, Gargi R, Zhang JP, Cheetham AK, Rao CNR (1998) Chem Phys Lett 287:671–676

    Article  CAS  Google Scholar 

  12. Redlich P, Loeffler J, Ajayan PM, Bill J, Aldinger F, Rühle M (1996) Chem Phys Lett 26:465–470

    Article  Google Scholar 

  13. Bai XD, Guo JD, Yu J, Wang EG, Yuan J, Zhou WZ (2000) Appl Phys Lett 76:2624–2626

    Article  CAS  Google Scholar 

  14. Raidongia K, Jagadeesan D, Upadhyay-Kahaly M, Waghmare UV, Pati SK, Eswaramoorthy M, Rao CNR (2008) J Mater Chem 18:83–90

    Article  CAS  Google Scholar 

  15. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Accounts Chem Res 35:1105–1113

    Article  CAS  Google Scholar 

  16. Ahmadi Peyghan A, Omidvar A, Hadipour NL, Bagheri Z, Kamfiroozi M (2012) Physica E 44:1357–1360

    Article  Google Scholar 

  17. Beheshtian J, Peyghan AA, Bagheri Z (2012) Sens Actuators B: Chem 171-172:846–852

    Google Scholar 

  18. Beheshtian J, Baei MT, Peyghan AA, Bagheri Z (2012) J Mol Model 18:4745–4750

    Article  CAS  Google Scholar 

  19. Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012) Struct Chem 23:653–657

    Article  CAS  Google Scholar 

  20. Beheshtian J, Soleymanabadi H, Kamfiroozi M, Ahmadi A (2012) J Mol Model 18:2343–2348

    Article  CAS  Google Scholar 

  21. Beheshtian J, Peyghan AA, Bagheri Z (2012) Physica E 44:1963–1968

    Article  CAS  Google Scholar 

  22. Zhou Z, Zhao J, Gao X, Chen Z, Yan J, Schleyer PR, Morinaga M (2005) Chem Mater 17:992–1000

    Article  CAS  Google Scholar 

  23. Schmidt M et al (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  24. Moradi M, Peyghan A, Bagheri Z, Kamfiroozi M (2012) J Mol Model 18:3535–3540

    Article  CAS  Google Scholar 

  25. Beheshtian J, Peyghan A, Bagheri Z, Kamfiroozi M (2012) Struct Chem 5:1567–1572

    Article  Google Scholar 

  26. Beheshtian J, Peyghan AA, Bagheri Z (2012) Comput Theor Chem 992:164–167

    Article  CAS  Google Scholar 

  27. Wanbayor R, Ruangpornvisuti V (2012) Appl Surf Sci 258:3298–3301

    Article  CAS  Google Scholar 

  28. Beheshtian J, Peyghan AA, Bagheri Z (2012) Appl Surf Sci 258:8171–8176

    Article  CAS  Google Scholar 

  29. Tomić S, Montanari B, Harrison NM (2008) Physica E 40:2125–2127

    Article  Google Scholar 

  30. O’Boyle N, Tenderholt A, Langner K (2008) J Comput Chem 29:839–845

    Article  Google Scholar 

  31. Olmsted J, Williams GM (1997) Chemistry: the molecular science. WCB, Iowa

    Google Scholar 

  32. Zhang J, Wang X, Yang W, Yu W, Feng T, Li Q, Liu X, Yang C (2006) Carbon 44:418–422

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ahmadi Peyghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beheshtian, J., Ahmadi Peyghan, A. Theoretical study on the functionalization of BC2N nanotube with amino groups. J Mol Model 19, 2211–2216 (2013). https://doi.org/10.1007/s00894-013-1759-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1759-2

Keywords

Navigation