Skip to main content
Log in

Drug permeability prediction using PMF method

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Drug permeability determines the oral availability of drugs via cellular membranes. Poor permeability makes a drug unsuitable for further development. The permeability may be estimated as the free energy change that the drug should overcome through crossing membrane. In this paper the drug permeability was simulated using molecular dynamics method and the potential energy profile was calculated with potential of mean force (PMF) method. The membrane was simulated using DPPC bilayer and three drugs with different permeability were tested. PMF studies on these three drugs show that doxorubicin (low permeability) should pass higher free energy barrier from water to DPPC bilayer center while ibuprofen (high permeability) has a lower energy barrier. Our calculation indicates that the simulation model we built is suitable to predict drug permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tian XJ, Yang XW, Yang X, Wang K (2009) Studies of intestinal permeability of 36 flavonoids using Caco-2 cell monolayer model. Int J Pharm 367:58–64

    Article  CAS  Google Scholar 

  2. Hou TJ, Wang J, Zhang W, Wang W, Xu X (2006) Recent advances in computational prediction of drug absorption and permeability in drug discovery. Curr Med Chem 13:2653–2667

    Article  CAS  Google Scholar 

  3. Kokate A, Li X, Williams PJ, Singh P, Jasti BR (2009) In silico prediction of drug permeability across buccal mucosa. Pharmaceut Res 26:1130–1139

    Article  CAS  Google Scholar 

  4. Norinder U, Österberg T, Artursson P (1997) Theoretical calculation and prediction of Caco-2 cell permeability using Molsurf parametrization and PLS statistics. Pharmaceut Res 14:1786–1791

    Article  CAS  Google Scholar 

  5. Acharya C, Seo PR, Polli JE, MacKerell AD Jr (2008) Computational model for predicting chemical substituent effects on passive drug permeability across parallel artificial membranes. Mol Pharmaceutics 5:818–828

    Article  CAS  Google Scholar 

  6. Paixão P, Gouveia LF, Morais JAG (2010) prediction of the in vitro permeability determined in Caco-2 cells by using artificial neural networks. Eur J Pharm Sci 41:107–117

    Article  Google Scholar 

  7. Rezai T, Bolk JE, Zhou MV, Kalyanaraman C, Lokey RS, Jacobson MP (2006) Conformational flexibility, internal hydrogen bonding, and passive membrane permeability. J Am Chem Soc 128:14073–14080

    Article  CAS  Google Scholar 

  8. Xiang T, Xu Y, Anderson BD (1998) The barrier domain for solute permeation varies with lipid bilayer phase structure. J Membr Biol 165(1):77–90

    Article  CAS  Google Scholar 

  9. Swift RV, Amaro RE (2011) Modeling the pharmacodynamics of passive membrane permeability. J Comput Aided Mol Des 25:1007–1017

    Article  CAS  Google Scholar 

  10. Orsi M, Essex JW (2010) Permeability of drugs and hormones through a lipid bilayer. Soft Matter 6:3797–3808

    Article  CAS  Google Scholar 

  11. Orsi M, Sanderson WE, Essex JW (2009) Permeability of small molecules through a lipid bilayer. J Phys Chem B 113:12019–12029

    Article  CAS  Google Scholar 

  12. MacCallum JL, Bennett WFD, Tieleman DP (2008) Distribution of amino acids in a lipid bilayer from computer simulations. Biophys J 94:3393–3404

    Article  CAS  Google Scholar 

  13. Boggara MB, Krishnamoorti R (2010) Partitioning of nonsteroidal anti-inflammatory drugs in lipid membranes. Biophys J 98:586–595

    Article  CAS  Google Scholar 

  14. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  15. Berger O, Edholm O, Jähnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure and constant temperature. Biophys J 72:2002–2013

    Article  CAS  Google Scholar 

  16. Tieleman DP, Berendsen HJC (1996) Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters. J Chem Phys 105:4871–4880

    Article  CAS  Google Scholar 

  17. Schuettelkopf AW, Aalten DMF (2004) PRODRG-a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D60:1355–1363

    CAS  Google Scholar 

  18. Hub JS, de Groot BL, van der Spoel D (2010) g_wham-A free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theory Comput 6:3713–3720

    Article  CAS  Google Scholar 

  19. Kyrychenko A, Sevriukov IY, Syzova ZA, Ladokhin AS, Doroshenko AO (2011) Partitioning of 2,6-Bis(1 H-Benzimidazol-2-yl)pyridine fluorophore into a phospholipid bilayer. Biophys Chem 154:8–17

    Article  CAS  Google Scholar 

  20. Usansky HH, Sinko PJ (2005) Estimating human drug oral absorption kinetics from Caco-2 permeability using an absorption-disposition model. J Pharmacol Exp Ther 314:391–399

    Article  CAS  Google Scholar 

  21. Paloncýová M, Berka K, Otyepka M (2012) Convergence of free energy profile of coumarin in lipid bilayer. J Chem Theory Comput 8:1200–1211

    Article  Google Scholar 

  22. Kandasamy SK, Larson RG (2006) Molecular dynamics simulations of model trans-mambrane peptides in lipid bilayers. Biophys J 90:2326–2343

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 21103125) and China National Basic Research Program (No. 2010CB735602). MD simulations were performed on TianHe-1A supercomputer of National Supercomputing Center in Tianjin. The authors would like to thank the anonymous referees for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fancui Meng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 340 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, F., Xu, W. Drug permeability prediction using PMF method. J Mol Model 19, 991–997 (2013). https://doi.org/10.1007/s00894-012-1655-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1655-1

Keywords

Navigation