Skip to main content
Log in

Ion disturbance and clustering in the NaCl water solutions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ion clustering and the solvation properties in the NaCl solutions are explored by molecular dynamics simulations with several popular force fields. The existence of ions has a negligible disturbance to the hydrogen bond structures and rotational mobility of water beyond the first ion solvation shells, which is suggested by the local hydrogen bond structures and the rotation times of water. The potential of mean force (PMF) of ion pair in the dilute solution presents a consistent view with the populations of ion clusters in the electrolyte solutions. The aggregation level of ions is sensitive to the force field used in the simulations. The ion-ion interaction potential plays an important role in the forming of the contact ion pair. The entropy of water increases as the ion pair approaches each other and the association of ion pair is driven by the increment of water entropy according to the results from the selected force fields. The kinetic transition from the single solvent separated state to the contact ion pair is controlled by the enthalpy loss of solution.

Ion pairing and ion induction to solvent play an important role in the protein folding and chemical reactions in the water solutions. The existence of ions has a negligible disturbance to the hydrogen bond structures and rotational mobility of water beyond the first ion solvation shells in the NaCl solutions. The clustering level of ions is sensitive to the force field used in the simulations. The formation of NaCl ion pair in the dilute solution is driven by the entropy increment of water

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marcus Y, Hefter G (2006) Ion pairing. Chem Rev 106:4585–4621

    Article  CAS  Google Scholar 

  2. Fuoss RM (1980) PNAS 77:34–38

    Article  CAS  Google Scholar 

  3. Omta AW, Kropman MF, Woutersen S, Bakker HJ (2003) Science 301:347–349

    Article  CAS  Google Scholar 

  4. Skinner JL (2010) Science 328:985–986

    Article  CAS  Google Scholar 

  5. Tielrooij KJ, Garcia-Araez N, Bonn M, Bakker HJ (2010) Science 328:1006–1009

    Article  CAS  Google Scholar 

  6. Chandra A (2000) Phys Rev Lett 85:768–771

    Article  CAS  Google Scholar 

  7. Carrillo-Tripp M, Saint-Martin H, Ortega-Blake I (2003) J Chem Phys 118:7062–7073

    Article  CAS  Google Scholar 

  8. Mancinelli R, Botti A, Bruni F, Ricci MA, Soper AK (2007) Phys Chem Chem Phys 9:2959–2967

    Article  CAS  Google Scholar 

  9. Collins KD, Neilson GW, Enderby JE (2007) Biophys Chem 128:95–104

    Article  CAS  Google Scholar 

  10. Smith DE, Dang LX (1994) J Chem Phys 100:3757–3766

    Article  CAS  Google Scholar 

  11. Degrève L, da Silva FLB (1999) J Chem Phys 111:5150–5156

    Article  Google Scholar 

  12. Chen AA, Pappu RV (2007) J Phys Chem B 111:6469–6478

    Article  CAS  Google Scholar 

  13. Gu B, Zhang FS, Wang ZP, Zhou HY (2008) J Chem Phys 129:184505–184507

    Article  CAS  Google Scholar 

  14. Fennell CJ, Bizjak A, Vlachy V, Dill KA (2009) J Phys Chem B 113:6782–6791

    Article  CAS  Google Scholar 

  15. Timko J, Bucher D, Kuyucak S (2010) J Chem Phys 132:114510

    Article  Google Scholar 

  16. Auffinger P, Cheatham TE III, Vaiana AC (2007) J Chem Theory Comput 3:1851–1859

    Article  CAS  Google Scholar 

  17. Adams DJ, McDonald IR (1974) J Phys C 7:2761–2775

    Article  CAS  Google Scholar 

  18. Huggins ML, Mayer JE (1933) J Chem Phys 1:643–646

    Article  CAS  Google Scholar 

  19. Tosi M, Fumi F (1964) J Phys Chem Solids 25:45–52

    Article  CAS  Google Scholar 

  20. Åqvist J (1990) J Phys Chem 94:8021–8024

    Article  Google Scholar 

  21. Beglov D, Roux B (1994) J Chem Phys 100:9050–9063

    Article  CAS  Google Scholar 

  22. Jensen KP, Jorgensen WL (2006) J Chem Theor Comput 2:1499–1509

    Article  CAS  Google Scholar 

  23. Straatsma TP, Berendsen HJC (1988) J Chem Phys 89:5876–5886

    Article  CAS  Google Scholar 

  24. Berendsen HJC, Grigera JR, Straatsma TP (1987) J Phys Chem 91:6269–6271

    Article  CAS  Google Scholar 

  25. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  26. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, p 331

    Google Scholar 

  27. Sanza E, Vega C (2007) J Chem Phys 126:014507

    Article  Google Scholar 

  28. Anwar J, Frenkel D, Noro MG (2003) J Chem Phys 118:728–735

    Article  CAS  Google Scholar 

  29. Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Hauk JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  30. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  31. Ponder JW, Richards FM (1987) J Comput Chem 8:1016–1024

    Article  CAS  Google Scholar 

  32. Hess B, Holm C, van der Vegt N (2006) J Chem Phys 124:164509

    Article  Google Scholar 

  33. Li J, Car R, Tang C, Wingreen NS (2007) PNAS 104:2626–2630

    Article  CAS  Google Scholar 

  34. Varma S, Rempe SB (2006) Biophys Chem 124:192–199

    Article  CAS  Google Scholar 

  35. Chowdhuri S, Chandra A (2003) J Chem Phys 118:9719–9725

    Article  CAS  Google Scholar 

  36. Laage D, Hynes JT (2006) Science 311:832–835

    Article  CAS  Google Scholar 

  37. Mancinelli R, Botti A, Bruni F, Ricci MA, Soper AK (2007) J Phys Chem B 111:13570–13577

    Article  CAS  Google Scholar 

  38. Yang L, Fan Y, Gao YQ (2011) J Phys Chem B 115:12456–12465

    Article  CAS  Google Scholar 

  39. Mark P, Nilsson L (2001) J Phys Chem A 105:9954–9960

    Article  CAS  Google Scholar 

  40. Chialvo AA, Simonson JM (2003) J Chem Phys 118:7921–7929

    Article  CAS  Google Scholar 

  41. Hassan SA (2008) J Phys Chem B 112:10573–10584

    Article  CAS  Google Scholar 

  42. Horinek D, Mamatkulov SI, Netz RR (2009) J Chem Phys 130:124507–124521

    Article  Google Scholar 

  43. Fyta M, Netz RR (2012) J Chem Phys 136:124103

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly thank Professor Jay William Ponder for providing the Tinker program. This work is supported by National Natural Science Foundation of China (No. 20873055, 21176029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Zhang, X. & Zhao, DX. Ion disturbance and clustering in the NaCl water solutions. J Mol Model 19, 661–672 (2013). https://doi.org/10.1007/s00894-012-1581-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1581-2

Keywords

Navigation