Skip to main content
Log in

Effect of surface hydroxyls on DME and methanol adsorption over γ-Al2O3 (hkl) surfaces and solvent effects: a density functional theory study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Methanol and dimethyl ether (DME) adsorption over clean and hydrated γ-Al2O3(100) and (110) surfaces was studied by using density functional theory (DFT) combined with conductor-like solvent model (COSMO) in gas phase and liquid paraffin. On clean γ-Al2O3 (100) and (110) surfaces, DME and methanol preferentially interact with Al3 and Al1 of the γ-Al2O3(110) and (100) surfaces, respectively. On hydrated γ-Al2O3(100) and (110) surfaces, the OH group can influence the adsorptive behavior of DME and methanol. The Al3 and Al1 active sites of the hydrated (110) and (100) surfaces are inactivated due to hydroxyl influence, respectively. Compared to the adsorption energies of DME and methanol adsorption over the clean and hydrated (110) and (100) surfaces in gas phase and liquid paraffin, it is found that the solvent effects can slightly reduce adsorptive ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang RQ, Yu XC, Zhang Y, Li WZ, Tsubaki N (2008) Fuel 87:443–450

    Article  CAS  Google Scholar 

  2. Kim JH, Park MJ, Kim SJ, Joo SJ, Jung KD (2004) Appl Catal A 264:37–41

    Article  CAS  Google Scholar 

  3. Fan JC, Chen CQ, Zhao J, Wei Huang, Xie KC (2009) Fuel Process Technol 91:414–418

    Article  Google Scholar 

  4. Gao ZH, Huang W, Yin LH, Xie KC (2009) Fuel Process Technol 90:1442–1446

    Article  CAS  Google Scholar 

  5. Breman BB, Beenackers AACM, Schuurman HA, Oesterholt E (1995) Catal Today 24:5–14

    Article  CAS  Google Scholar 

  6. Sherwin MB, Frank ME (1976) Hydrocarb Process 11:122–124

    Google Scholar 

  7. Verwey EJW (1935) Z Krist 91:317–320

    CAS  Google Scholar 

  8. Jennison DR, Schultz PA, Sullivan JP (2004) Phys Rev B 69:041405

    Article  Google Scholar 

  9. Digne M, Sautet P, Raybaud P, Toulhoat H, Artacho E (2002) J Phys Chem B 106:5155–5162

    Article  CAS  Google Scholar 

  10. Digne M, Raybaud P, Sautet P, Guillaume D, Toulhoat H (2008) J Am Chem Soc 130:11030–11039

    Article  CAS  Google Scholar 

  11. Zuo ZJ, Huang W, Han PD, Gao ZH, Li Z (2011) Appl Catal A 375:181–187

    Google Scholar 

  12. Pan YX, Liu CJ, Ge QF (2008) Langmuir 24:12410–12419

    Article  CAS  Google Scholar 

  13. Zhang RG, Wang BJ, Liu HY, Ling LX (2011) J Phys Chem C 115:19811–19818

    Article  CAS  Google Scholar 

  14. Digne M, Sautet P, Raybaud P, Euzen P, Toulhoat H (2004) J Catal 226:54–68

    Article  CAS  Google Scholar 

  15. Zuo ZJ, Huang W, Han PD, Li ZH (2009) J Mol Model 15:1079–1083

    Article  CAS  Google Scholar 

  16. Zuo ZJ, Huang W, Han PD, Li ZH (2010) Appl Surf Sci 256:2357–2362

    Article  CAS  Google Scholar 

  17. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  18. Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871

    Article  Google Scholar 

  19. Klamt A, Jonas V, Bürger T, Lohrenz JCW (1998) J Phys Chem A 102:5074–5085

    Article  CAS  Google Scholar 

  20. Tomonari M, Sugino O (2007) Chem Phys Lett 437:170–175

    Article  CAS  Google Scholar 

  21. Singh A, Ganguly B (2008) Mole Sim 34:973–979

    Article  CAS  Google Scholar 

  22. Zuo ZJ, Sun LL, Huang W, Han PD, Li ZH (2010) Appl Catal A 375:181–187

    Article  CAS  Google Scholar 

  23. Beaufils JP, Barbaux Y (1981) J Chim Phys 78:347–352

    CAS  Google Scholar 

  24. Nortier P, Fourre P, Saad ABM, Saur O, Lavalley JC (1990) Appl Catal 61:141–160

    Article  CAS  Google Scholar 

  25. Wang SG, Liao XY, Hu J, Cao DB, Li YW, Wang JG, Jiao HJ (2007) Surf Sci 601:271–1284

    Google Scholar 

  26. Paglia G, Buckley CE, Rohl AL, Hunter BA, Hart RD, Hanna JV, Byrne LT (2003) Phys Rev B 68:144110–144120

    Article  Google Scholar 

  27. Paglia G, Rohl AL, Buckley CE, Galeet JD (2005) Phys Rev B 71:224115–224130

    Article  Google Scholar 

  28. Tsyganenko AA, Mardilovich PP (1996) J Chem Soc Farad Trans 92:4843–4852

    Article  CAS  Google Scholar 

  29. Marescaa O, Ionescua A, Allouche A, Aycarda JP, Rajzmann M, Hutschka F (2003) J Mol Struct (THEOCHEM) 620:119–128

    Article  Google Scholar 

  30. Ionescu A, Allouche A, Aycard JP, Rajzmann M (2002) J Phys Chem B 106:9359–9366

    Article  CAS  Google Scholar 

  31. Feng G, Huo CF, Deng CM, Huang L, Li YW, Wang JG, Jiao HJ (2009) J Mol Catal A 304:58–64

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this study by the National Natural Science Foundation of China (Grant No.20676087), the National Basic Research Program of China (Grant No 2011CB211709), China Postdoctoral Science Foundation Funded Project (Grant No.2012 M510784), and Shanxi Province Science Foundation for Youths (Grant No.012021005-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuo, ZJ., Han, PD., Hu, JS. et al. Effect of surface hydroxyls on DME and methanol adsorption over γ-Al2O3 (hkl) surfaces and solvent effects: a density functional theory study. J Mol Model 18, 5107–5111 (2012). https://doi.org/10.1007/s00894-012-1495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1495-z

Keywords

Navigation