Skip to main content
Log in

Quantum chemical modeling study of adsorption of benzoic acid on anatase TiO2 nanoparticles

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The semi-empirical MSINDO method has been used to investigate the mode of adsorption of benzoic acid on the nano anatase TiO2 (100) surface. The (100) surface is modeled with a Ti36O90H36 cluster. Molecular dynamics simulations for the adsorption behavior of benzoic acid indicate it is linked to the TiO2 surface through interactions from the oxygen atoms of the carboxylic acid moiety with surface titanium atoms. The benzoic acid may be positioned with its aromatic ring either parallel or perpendicular relative to the surface, however the perpendicular adsorption mode is more stable. The calculated substrate-surface interaction energy is influenced by the number of linkages between the substrate and the surface as well as the degree of hydrogen bonding between the acid hydrogen and lattice oxygen atom. The greater stability of the perpendicular adsorption orientation is ascribed to the higher number of linkages between the substrate and the surface. It is concluded that the simplified model is sufficiently detailed to elucidate surface interactions.

Energetic favorability of anatase TiO2 nanoparticles

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nicolaescu AR, Wiest O, Kamat PV (2005) Mechanistic pathways of the hydroxyl radical reactions of quinoline. 1. Identification, distribution, and yields of hydroxylated products. J Phys Chem A 109:2822–2828

    Article  CAS  Google Scholar 

  2. Arnold WA, Winget P, Cramer CJ (2002) Reductive dechlorination of 1,1,2,2- tetrachloro ethane. Environ Sci Technol 36:3536–3541

    Article  CAS  Google Scholar 

  3. Rittner F, Boddenberg B, Fink RF, Staemmler V (1999) Adsorption of nitrogen on rutile(110). 2. Construction of a full five-dimensional potential energy surface. Langmuir 15:1449–1455

    Article  CAS  Google Scholar 

  4. Rittner F, Fink R, Boddenberg B, Staemmler V (1998) Adsorption of nitrogen on rutile (110): ab initio cluster calculations. Phys Rev B 57:4160–4171

    Article  CAS  Google Scholar 

  5. Wahab HS, Bredow T, Aliwi SM (2008) Computational investigation of water and oxygen adsorption on the anatase TiO2 (100) surface. J Mol Struct (THEOCHEM) 868:101–108

    Article  CAS  Google Scholar 

  6. Ogawa H (1991) Orientation of benzoic acid and terephthalic acid on an alumina surface and their reactivities observed by infrared spectroscopy. J Phys Org Chem 4:346–352

    Article  CAS  Google Scholar 

  7. Hügül M, Boz I, Apak R (1999) Photocatalytic decomposition of 4-chlorophenol over oxide catalysts. J Hazard Mater B 64:313–322

    Article  Google Scholar 

  8. Robert D, Parra S, Pulgarin C, Krzton A, Weber JV (2000) Chemisorption of phenols and acids on TiO2 surface. Appl Surf Sci 167:51–58

    Article  CAS  Google Scholar 

  9. Tanaka K, Padarmpole K, Hisanaga T (2000) Photocatalytic degradation of commercial azo dyes. Wat Res 34:327–333

    Article  CAS  Google Scholar 

  10. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  CAS  Google Scholar 

  11. Gandhi VG, Mishra MK, Rao MS, Kumar A, Joshi PA, Shah DO (2011) Comparative study on nano-crystalline titanium dioxide catalyzed photocatalytic degradation of aromatic carboxylic acids in aqueous medium. J Ind Eng Chem 17:331–339

    Article  CAS  Google Scholar 

  12. Jug K, Homann T, Bredow T (2004) Reaction mechanism of the selective catalytic reduction of NO with NH3 and O2 to N2 and H2O. J Phys Chem A 108:2966–2971

    Article  CAS  Google Scholar 

  13. Ahlswede B, Jug K (1999) Consistent modifications of SINDO1: I. Approximations and parameters. J Comput Chem 20:563–571

    Article  CAS  Google Scholar 

  14. Ahlswede B, Jug K (1999) Consistent modifications of SINDO1: II. Applications to first- and second-row elements. J Comput Chem 20:572–578

    Article  CAS  Google Scholar 

  15. Bredow T, Geudtner G, Jug K (2001) MSINDO parameterization for third-row transition metals. J Comput Chem 22:861–887

    Article  CAS  Google Scholar 

  16. Homann T, Bredow T, Jug K (2004) Adsorption of small molecules on the anatase(1 0 0) surface. Surf Sci 555:135–144

    Article  CAS  Google Scholar 

  17. Wahab HS, Bredow T, Aliwi SM (2008) MSINDO quantum chemical modeling study of water molecule adsorption at nano-sized anatase TiO2 surfaces. Chem Phys 354:50–57

    Article  CAS  Google Scholar 

  18. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  19. Jug K (1996) Extension of semiempirical methods to simulation of surfaces. Int J Quantum Chem 58:283–295

    Article  CAS  Google Scholar 

  20. Wahab HS, Bredow T, Aliwi SM (2008) Computational investigation of the adsorption and photocleavage of chlorobenzene on anatase TiO2 surfaces. Chem Phys 353:93–103

    Article  CAS  Google Scholar 

  21. Nair NN (2004) Molecular dynamics investigations of clusters and solids. Dissertation, Theoretical Chemistry Institute, Hannover University, Germany

  22. Hsieh TJ, Su CC, Chen CY, Liou CH, Lu LH (2005) Using experimental studies and theoretical calculations to analyze the molecular mechanism of coumarine, p-hydroxybenzoic acid and cinnamic acid. J Mol Struct (THEOCHEM) 741:193–199

    CAS  Google Scholar 

  23. Zhao X, Fang Y (2006) Raman experimental and DFT theoretical studies on the adsorption behavior of benzoic acid on silver nanoparticles. J Mol Struct 789:157–161

    Article  CAS  Google Scholar 

  24. Lee JG, Ahner J, Yates JT (2002) Adsorption geometry of 4-picoline chemisorbed on the Cu(110) surface: a study of forces controlling molecular self-assembly. J Am Chem Soc 124:2772–2780

    Article  CAS  Google Scholar 

  25. Lee J, Kuzmych O, Yates JT Jr (2005) Adsorption and geometry of the chemisorbed benzoate species on Cu(110). Surf Sci 582:117–124

    Article  CAS  Google Scholar 

  26. Neuber M, Zharnikov M, Walz J, Grunze M (1999) The adsorption geometry of benzoic acid on ni(110). Surf Rev Lett 6:53–75

    Article  CAS  Google Scholar 

  27. Bermudez VM (2010) Ab initio study of the interaction of dimethyl methylphosphonate rutile (110) and anatase (101) TiO2 surfaces. J Phys Chem C 114:3063–3074

    Article  CAS  Google Scholar 

  28. Steveson M, Bredow T, Gerson A (2002) MSINDO quantum chemical modeling study of the structure of aluminium-doped anatase and rutile titanium dioxide. Phys Chem Chem Phys 4:358–365

    Article  CAS  Google Scholar 

  29. Wahab HS, Bredow T, Aliwi SM (2009) A computational study on the adsorption and cleavage of para-chlorophenol on anatase TiO2 surface. Surf Sci 603:664–669

    Article  CAS  Google Scholar 

  30. Dobson KD, McQuillan AJ (2000) In situ infrared spectroscopic analysis of the adsorption of aromatic carboxylic acids to TiO2, ZrO2, Al2O3, and Ta2O5 from aqueous solutions. Spectrochim Acta A 56:557–565

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilal S. Wahab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahab, H.S. Quantum chemical modeling study of adsorption of benzoic acid on anatase TiO2 nanoparticles. J Mol Model 18, 2709–2716 (2012). https://doi.org/10.1007/s00894-011-1294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1294-y

Keywords

Navigation