Skip to main content
Log in

Substituent effects on geometric and electronic properties of iron tetraphenylporphyrin: a DFT investigation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

To investigate the effects of the substituents, substituent positions and axial chloride ligand on the geometric and electronic properties of the iron tetraphenylporphyrin (FeTPP), a series of the substituented iron tetraphenylporphyrins and their chlorides, FeT(o/p-R)PP and FeT(o/p-R)PPCl (R = −H, -Cl, -NO2, -OH, -OCH3), were systematically calculated without any symmetry constraint by using DFT method. For geometric structure, the substituent position and axial Cl ligand change the configuration of the iron porphyrin obviously. The ortho-substituents prefer making the phenyls perpendicular to the porphyrin ring; the axial chloride draws the central Fe ion ∼0.500 Å out of the porphyrin plane toward the ligand. With regard to electronic properties, it is found that ELUMO could be related to the catalytic activity. The electron-withdrawing group always lowers the energies of both frontier orbitals, while the electron-donating one heightens them simultaneously, but they affect the EHOMO and ELUMO in the same sequence, -NO2 < −Cl < −H < −OH < −OCH3. The substituent effects on the central Fe ion were explored by calculating NBO charge distribution, spin density and natural electron configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Asghari-Khiavi M, Safinejad F (2010) Theoretical studies on metal porphyrin halides: Geometrical parameters and nonlinear optical responses. J Mol Model 16:499–503

    Article  CAS  Google Scholar 

  2. Grinstaff MW, Hill MG, Labinger JA, Gray HB (1994) Mechanism of catalytic oxygenation of akanes by halogenated iron porphyrins. Science 264:1311–1313

    Article  CAS  Google Scholar 

  3. Dolphin D, Felton RH (1974) Biochemical significance of porphyrin pi cation radicals. Accounts Chem Res 7:26–32

    Article  CAS  Google Scholar 

  4. Groves JT, McClusky GA (1976) Aliphatic hydroxylation via oxygen rebound - oxygen-transfer catalyzed by iron. J Am Chem Soc 98:859–861

    Article  CAS  Google Scholar 

  5. Groves JT, Nemo TE, Myers RS (1979) Hydroxylation and epoxidation catalyzed by iron-porphine complexes - oxygen-transfer from iodosylbenzene. J Am Chem Soc 101:1032–1033

    Article  CAS  Google Scholar 

  6. Groves JT, Kruper WJ, Nemo TE, Myers RS (1980) Hydroxylation and epoxidation reactions catalyzed by synthetic metalloporphyrinates - models related to the active oxygen species of cytochrome-P-450. J Mol Catal 7:169–177

    Article  CAS  Google Scholar 

  7. Mansuy D, Bartoli JF, Chottard JC, Lange M (1980) Metalloporphyrin-catalyzed hydroxylation of cyclohexane by alkyl hydroperoxides - pronounced efficiency of iron-porphyrins. Angew Chem Int Edn 19:909–910

    Article  Google Scholar 

  8. Groves JT, Nemo TE (1983) Aliphatic hydroxylation catalyzed by iron porphyrin complexes. J Am Chem Soc 105:6243–6248

    Article  CAS  Google Scholar 

  9. Ji LN, Liu M, Hsieh AK, Hor TSA (1991) Metalloporphyrin-catalyzed hydroxylation of cyclohexane with molecular-oxygen. J Mol Catal 70:247–257

    Article  CAS  Google Scholar 

  10. Meunier B (1992) Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem Rev 92:1411–1456

    Article  CAS  Google Scholar 

  11. Lyons JE, Ellis PE, Myers HK (1995) Halogenated metalloporphyrin complexes as catalysts for selective reactions of acyclic alkanes with molecular-oxygen. J Catal 155:59–73

    Article  CAS  Google Scholar 

  12. Yuan Y, Ji HB, Chen YX, Han Y, Song XF, She YB, Zhong RG (2004) Oxidation of cyclohexane to adipic acid using Fe-porphyrin as a biomimetic catalyst. Org Process Res Dev 8:418–420

    Article  CAS  Google Scholar 

  13. Haber J, Matachowski L, Pamin K, Poltowicz J (2003) The effect of peripheral substituents in metalloporphyrins on their catalytic activity in Lyons system. J Mol Catal A-Chem 198:215–221

    Article  CAS  Google Scholar 

  14. Chen HL, Ellis PE, Wijesekera T, Hagan TE, Groh SE, Lyons JE, Ridge DP (1994) Correlation between gas-phase electron-affinities, electrode-potentials, and catalytic activities of halogenated metalloporphyrins. J Am Chem Soc 116:1086–1089

    Article  CAS  Google Scholar 

  15. Ellis PE, Lyons JE (1990) Selective air oxidation of light alkanes catalyzed by activated metalloporphyrins - the search for a suprabiotic system. Coord Chem Rev 105:181–193

    Article  CAS  Google Scholar 

  16. Wang LH, She YB, Zhong RG, Ji HB, Zhang YH, Song XF (2006) A green process for oxidation of p-nitrotoluene catalyzed by metalloporphyrins under mild conditions. Org Process Res Dev 10:757–761

    Article  CAS  Google Scholar 

  17. Liu N, Jiang GF, Guo CC, Tan Z (2009) Quantitative structure-activity relationship studies on ironporphyrin-catalyzed cyclohexane oxidation with PhIO. J Mol Catal A Chem 304:40–46

    Article  CAS  Google Scholar 

  18. Lu QZ, Yu RQ, Shen GL (2003) The structure, catalytic activity and reaction mechanism modeling for halogenated iron-tetraphenylporphyrin complexes. J Mol Catal A Chem 198:9–22

    Article  CAS  Google Scholar 

  19. Liao MS, Watts JD, Huang MJ (2007) Electronic structure of some substituted iron(II) porphyrins. Are they intermediate or high spin? J Phys Chem A 111:5927–5935

    Article  CAS  Google Scholar 

  20. Frisch MJ et al. (2009) Gaussian 09, Revision A.02. Gaussian Inc Wallingford CT

  21. Becke AD (1993) Density-functional thermochemistry.3. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  22. Lee CT, Yang WT, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  23. Lu X, Ma J, Sun R, Nan M, Meng F, Du J, Wang X, Shang H (2010) Substituent effects of iron porphyrins: Structural, kinetic, and theoretical studies. Electrochim Acta 56:251–256

    Article  CAS  Google Scholar 

  24. Sicking W, Korth HG, Jansen G, de Groot H, Sustmann R (2007) Hydrogen peroxide decomposition by a non-heme iron(III) catalase mimic: A DFT study. Chem Eur J 13:4230–4245

    Article  CAS  Google Scholar 

  25. Nakashima H, Hasegawa JY, Nakatsuji H (2006) On the reversible O2 binding of the Fe-porphyrin complex. J Comput Chem 27:426–433

    Article  CAS  Google Scholar 

  26. Nakashima H, Hasegawa JY, Nakatsuji H (2006) On the O2 binding of Fe-porphyrin, Fe-porphycene, and Fe-corrphycene complexes. J Comput Chem 27:1363–1372

    Article  CAS  Google Scholar 

  27. Kozlowski PM, Kuta J, Ohta T, Kitagawa T (2006) Resonance Raman enhancement of FeIV = O stretch in high-valent iron porphyrins: An insight from TD-DFT calculations. J Inorg Biochem 100:744–750

    Article  CAS  Google Scholar 

  28. Charkin OP, Klimenko NM, Nguyen PT, Charkin DO, Mebel AM, Lin SH, Wang YS, Wei SC, Chang HC (2005) Fragmentation of heme and hemin(+) with sequential loss of carboxymethyl groups: A DFT and mass-spectrometry study. Chem Phys Lett 415:362–369

    Article  CAS  Google Scholar 

  29. Ugalde JM, Dunietz B, Dreuw A, Head-Gordon M, Boyd RJ (2004) The spin dependence of the spatial size of Fe(II) and of the structure of Fe(II)-porphyrins. J Phys Chem A 108:4653–4657

    Article  CAS  Google Scholar 

  30. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  31. Feng XT, Yu JG, Liu RZ, Lei M, Fang WH, De Proft F, Liu SB (2010) Why iron? A spin-polarized conceptual density functional theory study on metal-binding specificity of porphyrin. J Phys Chem A 114:6342–6349

    Article  CAS  Google Scholar 

  32. Hu CJ, Noll BC, Schulz CE, Scheidt WR (2007) Four-coordinate iron(II) porphyrinates: Electronic configuration change by intermolecular interaction. Inorg Chem 46:619–621

    Article  CAS  Google Scholar 

  33. Liao MS, Scheiner S (2002) Electronic structure and bonding in metal porphyrins, metal = Fe, Co, Ni, Cu, Zn. J Chem Phys 117:205–219

    Article  CAS  Google Scholar 

  34. Liao MS, Scheiner S (2002) Electronic structure and bonding in unligated and ligated FeII porphyrins. J Chem Phys 116:3635–3645

    Article  CAS  Google Scholar 

  35. Collman JP, Hoard JL, Kim N, Lang G, Reed CA (1975) Synthesis, stereochemistry, and structure-related properties of alpha, beta, gamma, delta-tetraphenylporphinatoiron(II). J Am Chem Soc 97:2676–2681

    Article  CAS  Google Scholar 

  36. Goff H, Lamar GN, Reed CA (1977) Nuclear magnetic-resonance investigation of magnetic and electronic properties of intermediate spin ferrous porphyrin complexes. J Am Chem Soc 99:3641–3646

    Article  CAS  Google Scholar 

  37. Lang G, Spartalian K, Reed CA, Collman JP (1978) Mossbauer-effect study of magnetic-properties of S = 1 ferrous tetraphenylporphyrin. J Chem Phys 69:5424–5427

    Article  CAS  Google Scholar 

  38. Boyd PDW, Buckingham DA, McMeeking RF, Mitra S (1979) Paramagnetic anisotropy, average magnetic-susceptibility, and electronic-structure of intermediate-spin S = 1 (5,10,15,20-tetraphenylporphyrin)iron(II). Inorg Chem 18:3585–3591

    Article  CAS  Google Scholar 

  39. Mispelter J, Momenteau M, Lhoste JM (1980) Proton magnetic-resonance characterization of the intermediate (S = 1) spin state of ferrous porphyrins. J Chem Phys 72:1003–1012

    Article  CAS  Google Scholar 

  40. Scheidt WR, Reed CA (1981) Spin-state stereochemical relationships in iron porphyrins - implications for the hemoproteins. Chem Rev 81:543–555

    Article  CAS  Google Scholar 

  41. Ghosh A, Persson BJ, Taylor PR (2003) Ab initio multiconfiguration reference perturbation theory calculations on the energetics of low-energy spin states of iron(III) porphyrins. J Biol Inorg Chem 8:507–511

    CAS  Google Scholar 

  42. Reed CA, Guiset F (1996) A ''magnetochemical'' series. Ligand field strengths of weakly binding anions deduced from S = 3/2, 5/2 spin state mixing in iron(III) porphyrins. J Am Chem Soc 118:3281–3282

    Article  CAS  Google Scholar 

  43. Tanaka K, Elkaim E, Li L, Jue ZN, Coppens P, Landrum J (1986) Electron-density studies of porphyrins and phthalocyanines.4. Electron-density distribution in crystals of (meso-tetraphenylporphinato) iron(II). J Chem Phys 84:6969–6978

    Article  CAS  Google Scholar 

  44. Rydberg P, Olsen L (2009) The accuracy of geometries for iron porphyrin complexes from density functional theory. J Phys Chem A 113:11949–11953

    Article  CAS  Google Scholar 

  45. Scheidt WR, Finnegan MG (1989) Structure of monoclinic chloro(meso-tetraphenylporphyrinato)iron(III). Acta Crystallogr Sect C-Cryst Struct Commun 45:1214–1216

    Article  Google Scholar 

  46. Zhan CG, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies. J Phys Chem A 107:4184–4195

    Article  CAS  Google Scholar 

  47. Lewis D, Ioannides C, Parke D (1994) Interaction of a series of nitriles with the alcohol-inducible isoform of P450: Computer analysis of structure-activity relationships. Xenobiotica 24:401–408

    Article  CAS  Google Scholar 

  48. Zhou Z, Parr RG (1990) Activation hardness: New index for describing the orientation of electrophilic aromatic substitution. J Am Chem Soc 112:5720–5724

    Article  CAS  Google Scholar 

  49. Wei L, Yao X, Tian X, Cao M, Chen W, She Y, Zhang S (2011) A DFT investigation of the effects of doped Pb atoms on Pdn clusters (13 ≤ n ≤ 116). Comput Theor Chem 966:375–382

    Article  CAS  Google Scholar 

  50. Kalita B, Deka RC (2007) Stability of small Pdn (n = 1-7) clusters on the basis of structural and electronic properties: A density functional approach. J Chem Phys 127:244306

    Article  Google Scholar 

  51. Gomes JRB, Lodziana Z, Illas F (2003) Adsorption of small palladium clusters on the relaxed alpha-Al2O3(0001) surface. J Phys Chem B 107:6411–6424

    Article  CAS  Google Scholar 

  52. Nava P, Sierka M, Ahlrichs R (2003) Density functional study of palladium clusters. Phys Chem Chem Phys 5:3372–3381

    Article  CAS  Google Scholar 

  53. Ikezaki A, Ikeue T, Nakamura M (2002) Electronic effects of para-substituents on the electron configuration of dicyano[meso-tetrakis(p-substituted phenyl)porphyrinato]iron(III) complexes. Inorg Chim Acta 335:91–99

    Article  CAS  Google Scholar 

  54. Vangberg T, Ghosh A (1998) Direct porphyrin-aryl orbital overlaps in some meso-tetraarylporphyrins. J Am Chem Soc 120:6227–6230

    Article  CAS  Google Scholar 

  55. Donohoe RJ, Atamian M, Bocian DF (1987) Characterization of singly reduced iron(II) porphyrins. J Am Chem Soc 109:5593–5599

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Key Program of National Natural Science of China (Grant No. 21036009), the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (Grant No.PHR201107104 and PHR200907105) and the National Natural Science Foundation of China for the Youth (Grant No. 20903007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanbin She.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, L., She, Y., Yu, Y. et al. Substituent effects on geometric and electronic properties of iron tetraphenylporphyrin: a DFT investigation. J Mol Model 18, 2483–2491 (2012). https://doi.org/10.1007/s00894-011-1279-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1279-x

Keywords

Navigation