Skip to main content

Advertisement

Log in

Characterization of molecular recognition of Phosphoinositide-3-kinase α inhibitor through molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Phosphatidylinositol 3-kinase α (PI3Kα) is a promising target for anticancer drug discovery due to its overactivation in tumor cells. To systematically investigate the interactions between PI3Kα and PIK75 which is the most selective PI3Kα inhibitor reported to date, molecular docking, molecular dynamics simulation, and ensuing energetic analysis were utilized. The binding free energy between PI3Kα and PIK75 is −10.04 kcal•mol−1 using MMPBSA method, while −13.88 kcal•mol−1 using MMGBSA method, which is beneficial for the binding. The van der Waals/hydrophobic and electrostatic interactions play critical roles for the binding. The binding mode of PIK75 for PI3Kα is predicted. The conserved hydrophobic adenine region of PI3Kα made up of Ile800, Ile848, Val850, Val851, Met922, Phe930, and Ile932 accommodates the flat 6-bromine imidazo[1,2-a]pyridine ring of PIK75. The 2-methyl-5-nitrophenyl group of PIK75 extends to the P-loop region, and has four hydrogen-bond arms with the backbone and side chain of Ser773 and Ser774. And the distinct conformation of the P-loop induced by PIK75 is speculated to be responsible for the selectivity profile of PIK75. The predicted binding mode of PIK75 for PI3Kα presented in this study may help design high affinity and selective compounds to target PI3Kα.

The binding mode of PIK75 in the catalytic kinase domains of PI3Kα. Green, red, blue, and brownish red represent carbon, oxygen, nitrogen, and bromine, respectively. Hydrogen bonds are red dashes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bader AG, Kang S, Zhao Li, Vogt PK (2005) Nat Rev Cancer 5:921–929

    Article  CAS  Google Scholar 

  2. Vivanco I, Sawyers CL (2002) Nat Rev Cancer 2:489–501

    Article  CAS  Google Scholar 

  3. Vanhaesebroeck B, Waterfield MD (1999) Exp Cell Res 253:239–254

    Article  CAS  Google Scholar 

  4. Domin J, Waterfield MD (1997) FEBS Lett 410:91–95

    Article  CAS  Google Scholar 

  5. Huang CH, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE, Kinzler KW, Vogelstein B, Gabelli SB, Amzel LM (2007) Science 318:1744–1748

    Article  CAS  Google Scholar 

  6. Perrone F, Lampis A, Orsenigo M, Bartolomeo MD, Gevorgyan A, Losa M, Frattini M, Riva C, Andreola S, Bajetta E, Bertario L, Leo E, Pierotti MA, Pilotti S (2009) Ann Oncol 20:84–90

    Article  CAS  Google Scholar 

  7. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE (2004) Science 304:554–554

    Article  CAS  Google Scholar 

  8. Liu I, Cheng H, Roberts TM, Zhao JJ (2009) Nat Rev Drug Discov 8:627–644

    Article  CAS  Google Scholar 

  9. Chang HW, Aoki M, Fruman D, Auger KR, Bellacosa A, Tsichlis PN, Cantley LC, Roberts TM (1997) Vogt PK Science 276:1848–1850

    CAS  Google Scholar 

  10. Hayakawa M, Kawaguchi K, Kaizawa H, Koizumi T, Ohishi T, Yamano M, Okada M, Ohta M, Tsukamoto S, Raynaud FI, Parker P, Workman P, Waterfield MD (2007) Bioorg Med Chem 15:5837–5844

    Article  CAS  Google Scholar 

  11. Li YP, Wang YW, Zhang FQ (2010) J Mol Model 16:1449–1460

    Article  CAS  Google Scholar 

  12. Amzel LM, Huang CH, Mandelker D, Lengauer C, Gabelli SB, Vogelstein B (2008) Nat Rev Cancer 8:665–669

    Article  CAS  Google Scholar 

  13. Zvelebil MJ, Waterfield MD, Shuttleworth SJ (2008) Arch Biochem Biophys 477:404–410

    Article  CAS  Google Scholar 

  14. Frederick R, Denny WA (2008) J Chem Inf Model 48:629–638

    Article  CAS  Google Scholar 

  15. Han M, Zhang JZH (2010) J Chem Inf Model 50:136–145

    Article  CAS  Google Scholar 

  16. Sabbah DA, Vennerstrom JL, Zhong H (2010) J Chem Inf Model 50:1887–1898

    Article  CAS  Google Scholar 

  17. Sanner MF (1999) J Mol Graph Model 17:57–61

    CAS  Google Scholar 

  18. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) J Comput Chem 28:1145–1152

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W (2004) Gaussian 03. Gaussian Inc, Wallingford, CT

  20. Wang J, Wang W, Kollman PA, Case DA (2006) J Mol Graph Model 25:247–260

    Article  Google Scholar 

  21. Case DA, Darden T, Cheatham T III, Simmerling C, Wang J, Duke R, Luo R, Crowley MW, Zhang RCW, Merz K, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvary I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell S, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews D, Seetin M, Sagui C, Babin V, Kollman P (2008) AMBER 10. University of California, San Francisco

    Google Scholar 

  22. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  23. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  24. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Accounts Chem Res 33:889–897

    Article  CAS  Google Scholar 

  25. Onufriev A, Bashford D, Case DA (2004) Proteins 55:383–394

    Article  CAS  Google Scholar 

  26. Luo R, David L, Gilson MK (2002) J Comput Chem 23:1244–1253

    Article  CAS  Google Scholar 

  27. Sitkoff D, Sharp KA, Honig B (1994) J Phys Chem 98:1978–1988

    Article  CAS  Google Scholar 

  28. Case DA (1994) Curr Opin Struct Biol 4:285–290

    Article  CAS  Google Scholar 

  29. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss WA, Williams RL, Shokat KM (2006) Cell 125:733–747

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Natural Science Foundation of Shaanxi Province (NO. SJ08C207) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yawen Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 35 kb)

ESM 2

(DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Zhang, J., He, D. et al. Characterization of molecular recognition of Phosphoinositide-3-kinase α inhibitor through molecular dynamics simulation. J Mol Model 18, 1907–1916 (2012). https://doi.org/10.1007/s00894-011-1211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1211-4

Keywords

Navigation