Skip to main content
Log in

Probing the structural requirements of A-type Aurora kinase inhibitors using 3D-QSAR and molecular docking analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Aurora-A, the most widely studied isoform of Aurora kinase overexpressed aberrantly in a wide variety of tumors, has been implicated in early mitotic entry, degradation of natural tumor suppressor p53 and centrosome maturation and separation; hence, potent inhibitors of Aurora-A may be therapeutically useful drugs in the treatment of various forms of cancer. Here, we report an in silico study on a group of 220 reported Aurora-A inhibitors with six different substructures. Three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were carried out using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques on this series of molecules. The resultant optimum 3D-QSAR models exhibited an r 2cv value of 0.404-0.582 and their predictive ability was validated using an independent test set, ending in r 2pred 0.512-0.985. In addition, docking studies were employed to explore these protein–inhibitor interactions at the molecular level. The results of 3D-QSAR and docking analyses validated each other, and the key structural requirements affecting Aurora-A inhibitory activities, and the influential amino acids involved were identified. To the best of our knowledge, this is the first report on 3D-QSAR modeling of Aurora-A inhibitors, and the results can be used to accurately predict the binding affinity of related analogues and also facilitate the rational design of novel inhibitors with more potent biological activities.

A combined in silico modeling with 3D-QSAR and docking analysis was carried out on a total of 220 A-type Aurora kinase inhibitors. The results obtained from molecular docking and those from 3D-QSAR modeling can complement and validate each other very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fu J, Bian M, Jiang Q, Zhang C (2007) Mol Cancer Res 5:1–10

    Article  CAS  Google Scholar 

  2. Keen N, Taylor S (2004) Nat Rev Cancer 4:927–936

    Article  CAS  Google Scholar 

  3. Andrews PD (2005) Oncogene 24:5005–5015

    Article  CAS  Google Scholar 

  4. Jackson JR, Patrick DR, Dar MM, Huang PS (2007) Nat Rev Cancer 7:107–117

    Article  CAS  Google Scholar 

  5. Giet R, Petretti C, Prigent C (2005) Trends Cell Biol 15:241–250

    Article  CAS  Google Scholar 

  6. Glover DM, Leibowitz MH, McLean DA, Parry H (1995) Cell 81:95–105

    Article  CAS  Google Scholar 

  7. Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B, Schryver B, Flanagan P, Clairvoyant F, Ginther C, Chan CSM, Novotny M, Salomon DJ, Plowman GD (1998) EMBO J 17:3052–3065

    Article  CAS  Google Scholar 

  8. Pollard JR, Mortimore M (2009) J Med Chem 52:2629–2651

    Article  CAS  Google Scholar 

  9. Andersen CB, Wan Y, Chang JW, Riggs B, Lee C, Liu Y, Sessa F, Villa F, Kwiatkowski N, Suzuki M, Nallan L, Heald R, Musacchio A, Gray NS (2008) ACS Chem Biol 3:180–192

    Article  CAS  Google Scholar 

  10. Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, Brinkley BR, Sen S (1998) Nat Genet 20:189–193

    Article  CAS  Google Scholar 

  11. Dutertre S, Descamps S, Prigent C (2002) Oncogene 21:6175–6183

    Article  CAS  Google Scholar 

  12. Barr AR, Gergely F (2007) J Cell Sci 120:2987–2996

    Article  CAS  Google Scholar 

  13. Giet R, Uzbekov R, Cubizolles F, Le Guellec K, Prigent C (1999) J Biol Chem 274:15005–15013

    Article  CAS  Google Scholar 

  14. Bolanos-Garcia VM (2005) Int J Biochem Cell Biol 37:1572–1577

    Article  CAS  Google Scholar 

  15. Liu Q, Kaneko S, Yang L, Feldman RI, Nicosia SV, Chen J, Cheng JQ (2004) J Biol Chem 279:52175–52182

    Article  CAS  Google Scholar 

  16. Nishida N, Nagasaka T, Kashiwagi K, Boland CR, Goel A (2007) Cancer Biol Ther 6:525–533

    Article  CAS  Google Scholar 

  17. Gritsko TM, Coppola D, Paciga JE, Yang L, Sun M, Shelley SA, Fiorica JV, Nicosia SV, Cheng JQ (2003) Clin Cancer Res 9:1420–1426

    CAS  Google Scholar 

  18. Li DH, Zhu JJ, Firozi PF, Abbruzzese JL, Evans DB, Cleary K, Friess H, Sen S (2003) Clin Cancer Res 9:991–997

    CAS  Google Scholar 

  19. Reiter R, Gais P, Jutting U, Steuer-Vogt MK, Pickhard A, Bink K, Rauser S, Lassmann S, Höfler H, Werner M, Walch A (2006) Clin Cancer Res 12:5136–5141

    Article  CAS  Google Scholar 

  20. Wang X, Zhou YX, Qiao W, Tominaga Y, Ouchi M, Ouchi T, Deng CX (2006) Oncogene 25:7148–7158

    Article  CAS  Google Scholar 

  21. Ditchfield C, Johnson VL, Tighe A, Ellston R, Haworth C, Johnson T, Mortlock A, Keen N, Taylor SS (2003) J Cell Biol 161:267–280

    Article  CAS  Google Scholar 

  22. Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T, Graham JA, Demur C, Hercend T, Diu-Hercend A, Su M, Golec JMC, Miller KM (2004) Nat Med 10:262–267

    Article  CAS  Google Scholar 

  23. Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, Heckel A, van Meel J, Rieder CL, Peters JM (2003) J Cell Biol 161:281–294

    Article  CAS  Google Scholar 

  24. Mortlock AA, Foote KM, Heron NM, Jung FH, Pasquet G, Lohmann JJ, Warin N, Renaud F, Savi CD, Roberts NJ, Johnson T, Dousson CB, Hill GB, Perkins D, Hatter G, Wilkinson RW, Wedge SR, Heaton SP, Odedra R, Keen NJ, Crafter C, Brown E, Thompson K, Brightwell S, Khatri L, Brady MC, Kearney S, McKillop D, Rhead S, Parry T, Green S (2007) J Med Chem 50:2213–2224

    Article  CAS  Google Scholar 

  25. Manfredi MG, Ecsedy JA, Meetze KA, Balani SK, Burenkova O, Chen W, Galvin KM, Hoar KM, Huck JJ, Leroy PJ, Ray ET, Sells TB, Stringer B, Stroud SG, Vos TJ, Weatherhead GS, Wysong DR, Zhang M, Bolen JB, Claiborne CF (2007) Proc Natl Acad Sci USA 104:4106–4111

    Article  CAS  Google Scholar 

  26. Shimomura T, Hasako S, Nakatsuru Y, Mita T, Ichikawa K, Kodera T, Sakai T, Nambu T, Miyamoto M, Takahashi I, Miki S, Kawanishi N, Ohkubo M, Kotani H, Iwasawa Y (2010) Mol Cancer Ther 9:157–166

    Article  CAS  Google Scholar 

  27. Bebbington D, Binch H, Charrier JD, Everitt S, Fraysse D, Golec J, Kay D, Knegtel R, Mak C, Mazzei F, Miller A, Mortimore M, O’Donnell M, Patel S, Pierard F, Pinder J, Pollard J, Ramaya S, Robinson D, Rutherford A, Studley J, Westcott J (2009) Bioorg Med Chem Lett 19:3586–3592

    Article  CAS  Google Scholar 

  28. Coumar MS, Leou JS, Shukla P, Wu JS, Dixit AK, Lin WH, Chang CY, Lien TW, Tan UK, Chen CH, Hsu JT, Chao YS, Wu SY, Hsieh HP (2009) J Med Chem 52:1050–1062

    Article  CAS  Google Scholar 

  29. Anderson K, Yang J, Koretke K, Nurse K, Calamari A, Kirkpatrick RB, Patrick D, Silva D, Tummino PJ, Copeland RA, Lai Z (2007) Biochemistry 46:10287–10295

    Article  CAS  Google Scholar 

  30. Cramer RD III, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  31. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  32. Wang YH, Li Y, Yang SL, Yang L (2005) J Comput Aided Mol Des 19:137–147

    Article  CAS  Google Scholar 

  33. Li Y, Wang YH, Yang L, Zhang SW, Liu CH (2006) Internet Electron J Mol Des 5:1–12

    Google Scholar 

  34. Xu X, Yang W, Li Y, Wang YH (2010) Expert Opin Drug Discov 5:21–31

    Article  CAS  Google Scholar 

  35. Li Y, Wang YH, Yang L, Zhang SW, Liu CH, Yang SL (2005) J Mol Struct 733:111–118

    Article  CAS  Google Scholar 

  36. Ai CZ, Wang YH, Li Y, Li YH, Yang L (2008) QSAR Comb Sci 27:1183–1192

    Article  CAS  Google Scholar 

  37. Aliagas-Martin I, Burdick D, Corson L, Dotson J, Drummond J, Fields C, Huang OW, Hunsaker T, Kleinheinz T, Krueger E, Liang J, Moffat J, Phillips G, Pulk R, Rawson TE, Ultsch M, Walker L, Wiesmann C, Zhang B, Zhu BY, Cochran AG (2009) J Med Chem 52:3300–3307

    Article  CAS  Google Scholar 

  38. Howard S, Berdini V, Boulstridge JA, Carr MG, Cross DM, Curry J, Devine LA, Early TR, Fazal L, Gill AL, Heathcote M, Maman S, Matthews JE, McMenamin RL, Navarro EF, O’Brien MA, O’Reilly M, Rees DC, Reule M, Tisi D, Williams G, Vinkovi M, Wyatt PG (2009) J Med Chem 52:379–388

    Article  CAS  Google Scholar 

  39. Rawson TE Rüth M, Blackwood E, Burdick D, Corson L, Dotson J, Drummond J, Fields C, Georges GJ, Goller B, Halladay J, Hunsaker T, Kleinheinz T, Krell HW, Li J, Liang J, Limberg A, McNutt A, Moffat J, Phillips G, Ran Y, Safina B, Ultsch M, Walker L, Wiesmann C, Zhang B, Zhou A, Zhu BY, Ru¨ger P, Cochran AG (2008) J Med Chem 51:4465–4475

    Google Scholar 

  40. Heron NM, Anderson M, Blowers DP, Breed J, Eden JM, Green S, Hill GB, Johnson T, Jung FH, McMiken HH, Mortlock AA, Pannifer AD, Pauptit RA, Pink J, Roberts NJ, Rowsell S (2006) Bioorg Med Chem Lett 16:1320–1323

    Article  CAS  Google Scholar 

  41. Jung FH, Pasquet G, Lambert-van der Brempt C, Lohmann JJ, Warin N, Renaud F, Germain H, De Savi C, Roberts N, Johnson T, Dousson C, Hill GB, Mortlock AA, Heron N, Wilkinson RW, Wedge SR, Heaton SP, Odedra R, Keen NJ, Green S, Brown E, Thompson K, Brightwell S (2006) J Med Chem 49:955–970

  42. Leonard JT, Roy K (2006) QSAR Comb Sci 25:235–251

    Article  CAS  Google Scholar 

  43. Jain AN (2003) J Med Chem 46:499–511

    Article  CAS  Google Scholar 

  44. Zhao B, Smallwood A, Yang J, Koretke K, Nurse K, Calamari A, Kirkpatrick RB, Lai Z (2008) Protein Sci 17:1791–1797

    Article  CAS  Google Scholar 

  45. Tari LW, Hoffman ID, Bensen DC, Hunter MJ, Nix J, Nelson KJ, McRee DE, Swanson RV (2007) Bioorg Med Chem Lett 17:688–691

    Article  CAS  Google Scholar 

  46. Cheetham GM, Knegtel RM, Coll JT, Renwick SB, Swenson L, Weber P, Lippke JA, Austen DA (2002) J Biol Chem 277:42419–42422

    Article  CAS  Google Scholar 

  47. Roy PP, Roy K (2008) QSAR Comb Sci 27:302–313

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported financially by the National Natural Science Foundation of China (Grant No. 10801025) and the Fund of Northwest A&F University. We thank Dr. Ming Hao for helping with PCA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-hua Wang.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

Supporting information is available on the publishers Web site along with the published article. (PDF 6933 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Hx., Li, Y., Wang, X. et al. Probing the structural requirements of A-type Aurora kinase inhibitors using 3D-QSAR and molecular docking analysis. J Mol Model 18, 1107–1122 (2012). https://doi.org/10.1007/s00894-011-1042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1042-3

Keywords

Navigation