Skip to main content

Advertisement

Log in

Mechanism of the gas-phase decomposition of trifluoro-, trichloro-, and tribromomethanols in the presence of hydrogen halides

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ab initio calculations at the G2 level were used in a theoretical analysis of the kinetics of the decomposition of trifluoro-, trichloro-, and tribromomethanols. The high-pressure limiting rate coefficients kdiss,∞ for the thermal dissociation of CF3OH, CCl3OH, and CBr3OH were calculated using the conventional transition state theory. The results of potential surface calculations show that in the presence of the hydrogen halides HX (X = F, Cl, and Br), considerably lower energy pathways are accessible for the decomposition of CF3OH, CCl3OH, and CBr3OH. The mechanism of the reactions appears to be complex and consists of three consecutive elementary processes with the formation of pre- and post-reaction adducts. The presence of hydrogen halides considerably decreases the energy barrier for the bimolecular decomposition of the alcohols CF3OH, CCl3OH, and CBr3OH. Results of this study indicate that hydrogen halides can considerably accelerate the homogeneous decomposition of perhalogenated methanols when they are present in the reaction area at sufficiently high concentrations. However, the atmospheric concentrations of hydrogen halides are too small for efficient removal of atmospheric CF3OH, CCl3OH, and CBr3OH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Finnlayson-Pitts BJ, Pitts JN (2000) Chemistry of the Upper and Lower Atmosphere. Academic, San Diego

    Google Scholar 

  2. Wayne RP, Poulet G, Biggs P, Burrows JP, Cox RA, Crutzen PJ, Hayman GD, Jenkin ME, LeBras G, Moortgat GK, Platt U, Schindler RN (1995) Atmos Environ 29:2677–2881

    Article  CAS  Google Scholar 

  3. Wallington TJ, Dagaut P, Kurylo MJ (1992) Chem Rev 92:667–710

    Article  CAS  Google Scholar 

  4. Sehested J, Wallington TJ (1993) Environ Sci Technol 27:146–152

    Article  CAS  Google Scholar 

  5. Wallington TJ, Schneider WF (1994) Environ Sci Technol 28:1198–1200

    Article  CAS  Google Scholar 

  6. Schneider WF, Wallington TJ, Minschwaner K, Stahlberg EA (1995) Environ Sci Technol 29:247–250

    Article  CAS  Google Scholar 

  7. Huey LG, Hanson DR, Lovejoy ER (1995) J Geophys Res 100:18771–18774

    Article  Google Scholar 

  8. Bednarek G, Kohlmann JP, Saathoff H (1995) Zellner R. Z Phys Chem Munich 188:1–15

    CAS  Google Scholar 

  9. Lovejoy ER, Huey LG, Hanson DR (1995) J Geophys Res 100:18775–18780

    Article  Google Scholar 

  10. Wallington TJ, Hurley MD, Schneider WF, Sehested J, Nielsen OJ (1993) J Phys Chem 97:7606–7611

    Article  CAS  Google Scholar 

  11. Francisco JS (1991) Chem Phys 150:19–27

    Article  CAS  Google Scholar 

  12. Bock CW, Trachtman M, Niki H, Mains GJ (1994) J Phys Chem 98:7976–7980

    Article  CAS  Google Scholar 

  13. Francisco JS (1994) Chem Phys Lett 218:401–405

    Article  CAS  Google Scholar 

  14. Schneider WF, Wallington TJ, Huie RE (1996) J Phys Chem 100:6097–6103

    Article  CAS  Google Scholar 

  15. Kim SJ, Song HS (1999) Bull Korean Chem Soc 20:1493–1500

    CAS  Google Scholar 

  16. Brudnik K, Jodkowski JT, Ratajczak E, Venkatraman R, Nowek A, Sullivan RH (2001) Chem Phys Lett 345:435–444

    Article  CAS  Google Scholar 

  17. Brudnik K, Jodkowski JT, Ratajczak E (2003) J Mol Struct 656:333–339

    Article  CAS  Google Scholar 

  18. Brudnik K, Jodkowski JT, Ratajczak E (2003) Bull Pol Acad Sci Chem 51:77–91

    CAS  Google Scholar 

  19. Fernández LE, Varetti EL (2003) J Mol Struct THEOCHEM 629:175–183

    Article  Google Scholar 

  20. Tyndall GS, Wallington TJ, Hurley MD, Schneider WF (1993) J Phys Chem 97:1576–1582

    Article  CAS  Google Scholar 

  21. Wallington TJ, Schneider WF, Barnes I, Becker KH, Sehested J, Nielsen OJ (2000) Chem Phys Lett 322:97–102

    Article  CAS  Google Scholar 

  22. Schnell M, Mühlhäuser M, Peyerimhoff SD (2002) Chem Phys Lett 361:1–7

    Article  CAS  Google Scholar 

  23. Sun H, Bozzelli JW (2001) J Phys Chem A 105:4504–4516

    Article  CAS  Google Scholar 

  24. Brudnik K, Jodkowski JT, Nowek A, Leszczynski J (2007) Chem Phys Lett 435:194–200

    Article  CAS  Google Scholar 

  25. Montgomery JA, Michels HH, Francisco JS (1994) Chem Phys Lett 220:391–396

    Article  CAS  Google Scholar 

  26. Notario R, Castaño O, Abboud JLM (1996) Chem Phys Lett 263:367–370

    Article  CAS  Google Scholar 

  27. Espinosa-Garcia J (1999) Chem Phys Lett 315:239–247

    Article  CAS  Google Scholar 

  28. Segovia M, Ventura ON (1997) Chem Phys Lett 277:490–496

    Article  CAS  Google Scholar 

  29. Brudnik K, Wójcik-Pastuszka D, Jodkowski JT, Leszczynski J (2008) J Mol Model 14:1159–1172

    Article  CAS  Google Scholar 

  30. Vöhringer-Martinez E, Hansmann B, Hernandez H, Francisco JS, Troe J, Abel B (2007) Science 315:497–501

    Article  Google Scholar 

  31. Garrett BC (2004) Science 303:1146–1147

    Article  CAS  Google Scholar 

  32. Takahashi K, Kramer ZC, Vaida V, Skodje RT (2007) Phys Chem Chem Phys 9:3864–3871

    Article  CAS  Google Scholar 

  33. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221–7230

    Article  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM W, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03. Gaussian Inc, Pittsburgh PA

  35. Johnston HS (1966) Gas-Phase Reaction Rate Theory. Ronald, New York

    Google Scholar 

  36. Laidler KJ (1969) Theories of Chemical Reaction Rates. McGraw-Hill, New York

    Google Scholar 

  37. Burk P, Koppel IA, Rummel A, Trumlar A (2000) J Phys Chem A 104:1602–1607

    Article  CAS  Google Scholar 

  38. Mozurkevich M, Benson SW (1984) J Phys Chem 88:6429–6435

    Article  Google Scholar 

  39. Chen Y, Rauk A, Tschuikow-Roux E (1991) J Phys Chem 95:9900–9908

    Article  CAS  Google Scholar 

  40. Jodkowski JT, Rayez MT, Rayez JC, Bérces T, Dóbé S (1998) J Phys Chem A 102:9219–9229

    Article  CAS  Google Scholar 

  41. Jodkowski JT, Rayez MT, Rayez JC, Bérces T, Dóbé S (1998) J Phys Chem A 102:9230–9243

    Article  CAS  Google Scholar 

  42. Jodkowski JT, Rayez MT, Rayez JC, Bérces T, Dóbé S (1999) J Phys Chem A 103:3750–3765

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Wroclaw Medical University under grant no. ST-263. The Wroclaw Center of Networking and Supercomputing is acknowledged for the generous allotment of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy T. Jodkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brudnik, K., Jodkowski, J.T., Sarzyński, D. et al. Mechanism of the gas-phase decomposition of trifluoro-, trichloro-, and tribromomethanols in the presence of hydrogen halides. J Mol Model 17, 2395–2409 (2011). https://doi.org/10.1007/s00894-011-0988-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-0988-5

Keywords

Navigation