Skip to main content

Advertisement

Log in

Binding efficiencies of carbohydrate ligands with different genotypes of cholera toxin B: molecular modeling, dynamics and docking simulation studies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Vibrio cholerae produces cholera toxin (CT) that consists of two subunits, A and B, and is encoded by a filamentous phage CTXΦ. The A subunit carries enzymatic activity that ribosylates ADP, whereas the B subunit binds to monosialoganglioside (GM1) receptor in epithelial cells. Molecular analysis of toxigenic V. cholerae strains indicated the presence of multiple ctxB genotypes. In this study, we employed a comparative modeling approach to define the structural features of all known variants of ctxB found in O139 serogroup V. cholerae. Modeling, molecular dynamics and docking simulations studies suggested subtle variations in the binding ability of ctxB variants to carbohydrate ligands of GM1 (galactose, sialic acid and N-acetyl galactosamine). These findings throw light on the molecular efficiencies of pathogenic isolates of V. cholerae harboring natural variants of ctxB in causing the disease, thus suggesting the need to consider ctxB variations when designing vaccines against cholera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nusrin S, Khan GY, Bhuiyan NA, Ansaruzzaman M, Hossain MA, Safa A, Khan R, Faruque SM, Sack DA, Hamabata T, Takeda Y, Nair GB (2004) Diverse CTX phages among toxigenic Vibrio cholerae O1 and O139 strains isolated between 1994 and 2002 in an area where cholera is endemic in Bangladesh. J Clin Microbiol 42:5854–5856

    Article  Google Scholar 

  2. Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914

    Article  CAS  Google Scholar 

  3. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483

    Article  CAS  Google Scholar 

  4. Davis BM, Moyer KE, Boyd EF, Waldor MK (2000) CTX prophages in classical biotype Vibrio cholerae: functional phage genes but dysfunctional phage genomes. J Bacteriol 182:6992–6998

    Article  CAS  Google Scholar 

  5. Freter R, O'Brien PC (1981) Role of chemotaxis in the association of motile bacteria with intestinal mucosa: fitness and virulence of nonchemotactic Vibrio cholerae mutants in infant mice. Infect Immun 34:222–233

    CAS  Google Scholar 

  6. Mekalanos JJ (1985) Cholera toxin: genetic analysis, regulation, and role in pathogenesis. Curr Top Microbiol Immunol 118:97–118

    Article  CAS  Google Scholar 

  7. Holmgren J, Lonnroth I, Svennerholm L (1973) Tissue receptor for cholera exotoxin: postulated structure from studies with GM1 ganglioside and related glycolipids. Infect Immun 8:208–214

    CAS  Google Scholar 

  8. Spangler BD (1992) Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56:622–647

    CAS  Google Scholar 

  9. Olsvik O, Wahlberg J, Petterson B, Uhlen M, Popovic T, Wachsmuth IK, Fields PI (1993) Use of automated sequencing of polymerase chain reaction-generated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae O1 strains. J Clin Microbiol 31:22–25

    CAS  Google Scholar 

  10. Bhuiyan NA, Nusrin S, Alam M, Morita M, Watanabe H, Ramamurthy T, Cravioto A, Nair GB (2009) Changing genotypes of cholera toxin (CT) of Vibrio cholerae O139 in Bangladesh and description of three new CT genotypes. FEMS Immunol Med Microbiol 57:136–141

    Article  CAS  Google Scholar 

  11. Jertborn M, Nordstrom I, Kilander A, Czerkinsky C, Holmgren J (2001) Local and systemic immune responses to rectal administration of recombinant cholera toxin B subunit in humans. Infect Immun 69:4125–4128

    Article  CAS  Google Scholar 

  12. Jertborn M, Svennerholm AM, Holmgren J (1994) Immunological memory after immunization with oral cholera B subunit-whole-cell vaccine in Swedish volunteers. Vaccine 12:1078–1082

    Article  CAS  Google Scholar 

  13. Tamplin ML, Ahmed MK, Jalali R, Colwell RR (1989) Variation in epitopes of the B subunit of El Tor and classical biotype Vibrio cholerae O1 cholera toxin. J Gen Microbiol 135:1195–1200

    CAS  Google Scholar 

  14. Jobling MG, Holmes RK (2002) Mutational analysis of ganglioside GM (1)-binding ability, pentamer formation, and epitopes of cholera toxin B (CTB) subunits and CTB/heat-labile enterotoxin B subunit chimeras. Infect Immun 70:1260–1271

    Article  CAS  Google Scholar 

  15. Aman AT, Fraser S, Merritt EA, Rodigherio C, Kenny M, Ahn M, Hol WG, Williams NA, Lencer WI, Hirst TR (2001) A mutant cholera toxin B subunit that binds GM1- ganglioside but lacks immunomodulatory or toxic activity. Proc Natl Acad Sci USA 98:8536–8541

    Article  CAS  Google Scholar 

  16. Minke WE, Hong F, Verlinde CLMJ, Hol WGJ, Fan E (1999) Using a galactose library for exploration of a novel hydrophobic pocket in the receptor binding site of the Escherichia coli heat-labile enterotoxin. J Biol Chem 274:33469–33473

    Article  CAS  Google Scholar 

  17. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1995) Short protocol in molecular biology, 3rd edn. Wiley, New York

  18. Mantri CK, Mohapatra SS, Singh DV (2010) Effect of storage and sodium chloride on excision of CTXΦ or pre- CTXΦ and CTXΦ from Vibrio cholerae O139 strains. Infect Genet Evol 10:925–930. doi:10.1016/j.meegid.2010.05.015

    Article  CAS  Google Scholar 

  19. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  20. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  21. Laskoswki RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the sterochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Google Scholar 

  22. Eisenberg D, Luthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Google Scholar 

  23. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy minimization and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  24. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    Article  CAS  Google Scholar 

  25. Hess B, Kutzner C, Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput 4:435-447. doi:10.1021/ct700301q

    Google Scholar 

  26. Chris O, Alessandra V, Alan E, Wilfred FVG (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  Google Scholar 

  27. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  28. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  29. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  Google Scholar 

  30. Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV (2005) Virtual computational chemistry laboratory—design and description. J Comput Aid Mol Des 19:453–463

    Google Scholar 

  31. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  32. Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aid Mol Des 16:11–26

    Google Scholar 

  33. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng 8:127–134

    Google Scholar 

  34. Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule database. J Comput Aid Mol Des 15:411–428

    Google Scholar 

  35. Merritt EA, Sarfaty S, van den Akker F, L'Hoir C, Martial JA, Hol WG (1994) Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci 3:166–175

    Article  CAS  Google Scholar 

  36. Nair GB, Qadri F, Holmgren J, Svennerholm AM, Safa A, Bhuiyan NA, Ahmad QS, Faruque SM, Faruque AS, Takeda Y, Sack DA (2006) Cholera due to altered El Tor strains of Vibrio cholerae O1 in Bangladesh. J Clin Microbiol 44:4211–4213

    Article  CAS  Google Scholar 

  37. Safa A, Sultana J, Dac Cam P, Mwansa JC, Kong RY (2008) Vibrio cholerae O1 hybrid El Tor strains, Asia and Africa. Emerg Infect Dis 14:987–988

    Article  Google Scholar 

  38. Davis BM, Waldor MK (2003) Filamentous phages linked to virulence of Vibrio cholerae. Curr Opin Microbiol 6:35–42

    Article  CAS  Google Scholar 

  39. Kaper JB, Morris JG Jr, Levine MM (1995) Cholera. Clin Microbiol Rev 8:48–86

  40. Faruque SM, Albert MJ, Mekalanos JJ (1998) Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 62:1301–1314

    CAS  Google Scholar 

  41. Branderhorst HM, Liskamp RMJ, Visser GM, Pieters RJ (2007) Strong inhibition of cholera toxin binding by galactose dendrimers. Chem Commun 47:5043–5045. doi:10.1039/b711070g

    Article  Google Scholar 

  42. Turnbull WB, Precious BL, Homans SW (2004) Dissecting the cholera toxin–ganglioside GM1 interaction by isothermal titration calorimetry. J Am Chem Soc 126:1047–1054

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the Indian Council of Medical Research, New Delhi (Immuno. 18/11/17-ECD-I) to DVS and funds contributed by the Department of Biotechnology, New Delhi, to the Institute of Life Sciences. A senior Research Fellowship awarded by the Indian Council of Medical Research, New Delhi, India, to MHU Turabe Fazil is gratefully acknowledged. The authors thank the reviewers for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durg Vijai Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazil, M.H.U.T., Kumar, S., Farmer, R. et al. Binding efficiencies of carbohydrate ligands with different genotypes of cholera toxin B: molecular modeling, dynamics and docking simulation studies. J Mol Model 18, 1–10 (2012). https://doi.org/10.1007/s00894-010-0947-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0947-6

Keywords

Navigation