Skip to main content
Log in

Isolation, biological evaluation and 3D-QSAR studies of insecticidal/narcotic sesquiterpene polyol esters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

For the first time, a set of (43) natural sesquiterpene polyol esters isolated from the root bark of Celastrus angulatus Maxim and Euonymus japonicus Thunb were subjected to 3D-QSAR comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) studies, with the aim of proposing novel sesquiterpene-based compounds with optimal narcotic or insecticidal activities. The established 3D-QSAR models exhibit reasonable statistical quality and prediction capabilities, with internal cross-validated Q 2 values of ∼0.5 and external predicted R 2 values of >0.9, respectively. The relative contributions of the steric/electrostatic fields of the 3D-QSAR models show that the electronic effect governs the narcotic activities of the molecules, but the hybrid effect of the electrostatic and hydrophobic interactions is more influential in the insecticidal activities of the compounds. These findings may have valuable implications for the development of novel natural insecticides.

A 3D-QSAR study using CoMFA and CoMSIA methods was carried out on a series of 43 natural insecticidal/narcotic sesquiterpene polyol esters. The CoMSIA models showed excellent predictive capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Grabley S, Thiericke R (1999) Adv Biochem Eng/Biotechnol 64:101–154

    Article  CAS  Google Scholar 

  2. Cooper EL (2004) eCAM 1:215–217

    Google Scholar 

  3. Sparks TC, Crouse GD, Durst G (2001) Pest Manag Sci 57:896–905

    Article  CAS  Google Scholar 

  4. Isman MB, Akhtar Y (2007) Plant natural products as a source for developing environmentally acceptable insecticides. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticide design using advanced technologies. Springer, Berlin, pp 235–248

  5. Gao JM, Wu WJ, Zhang JW (2007) Nat Prod Rep 24:1153–1189

    Article  CAS  Google Scholar 

  6. Cortés-Selva F, Campillo M, Reyes CP, Jiménez IA, Castanys S, Bazzocchi IL, Pardo L, Gamarro F, Ravelo AG (2004) J Med Chem 47:576–587

    Article  Google Scholar 

  7. Gonzalez AG, Jiminez IA, Ravelo AG, Coll J, Gonzalez JA, Lloria (1997) J Biochem Syst Ecol 25:513–519

    Article  CAS  Google Scholar 

  8. Cheng CY, Huang PH (1999) Flora Reipublicae Popularis Sinicae 3(45). Science Press, Beijing, pp 7–128

  9. Ji ZQ, Hu ZN, Liu GQ, Wu W (2004) J Acta Bot Boreali-Occidentalia Sin 24:748–753

    Google Scholar 

  10. Zhan JW, Wu WJ, Tian X (2004) Chin J Pesticide Sci 6:21–25

    Google Scholar 

  11. Wu W (1991) J Plant Prot 17:34–38

    Google Scholar 

  12. Spivey AC, Weston M, Woodhead S (2002) Chem Soc Rev 31:43–59

    Article  CAS  Google Scholar 

  13. Cortes-Selva F, Jimenez IA, Munoz-Martinez F, Campillo M, Bazzocchi IL, Pardo L, Ravelo AG, Castanys S, Gamarro F (2005) Curr Pharm Des 11:3125–3139

    Article  CAS  Google Scholar 

  14. Reyes CP, Muñoz-Martinez F, Torrecillas IR, Mendoza CR, Gamarro F, Bazzocchi IL, Núñez MJ, Pardo L, Castanys S, Campillo M, Jiménez IA (2007) J Med Chem 50:4808–4817

    Article  CAS  Google Scholar 

  15. Zhang YL, Xu Y, Lin JF (1989) Acta Pharmacol Sin 24:568–578

    Google Scholar 

  16. Duan H, Takaishi Y, Momota H, Ohmoto Y, Taki T, Tori M, Takaoka S, Jia Y, Li D (2001) Tetrahedron 57:8413–8424

    Article  CAS  Google Scholar 

  17. Kuo Y, King M, Chen C, Chen H, Chen C, Chen K, Lee KJ (1994) Nat Prod 57:263–269

    Article  CAS  Google Scholar 

  18. González AG, San Andrés L, Ravelo AG, Luis JG, Jiménez IA, Domínguez XA (1989) J Nat Prod 52:1338–1341

    Article  Google Scholar 

  19. Perez-Victoria JM, Tincusi BM, Jimenez IA, Bazzocchi IL, Gupta MP, Castanys S, Gamarro F, Ravelo AG (1999) J Med Chem 42:4388–4393

    Article  CAS  Google Scholar 

  20. Cortes-Selva F, Munoz-Martinez F, Ilias A, Jimenez AI, Varadi A, Gamarro F, Castanys S (2005) Biochem Biophys Res Commun 329:502–507

    Article  CAS  Google Scholar 

  21. Muñoz-Martinez F, Lu P, Cortes-Selva F, Perez-Victoria JM, Jimenez AI, Ravelo AG, Sharom FJ, Gamarro F, Castanys S (2004) Cancer Res 64:7130–7138

    Article  Google Scholar 

  22. Ujita K, Takaishi Y, Tokuda H, Nishino H, Iwashima A, Fujita T (1993) Cancer Lett 68:129–133

    Article  CAS  Google Scholar 

  23. Takaishi Y, Ujita K, Tokuda H, Nishino H, Iwashima A, Fujita T (1992) Cancer Lett 65:19–26

    Article  CAS  Google Scholar 

  24. Wei SP, Wang MA, Zhang JW, Qian Y, Ji ZQ, Wu WJ (2009) Nat Prod Commun 4:461–466

    CAS  Google Scholar 

  25. Wei SP, Ji ZQ, Zhang JW (2009) Molecules 14:1396–1403

    Article  CAS  Google Scholar 

  26. Wu WJ, Wang MA, Zhu JB, Zhou WM, Hu ZN, Ji ZQ (2001) J Nat Prod 64:364–367

    Article  CAS  Google Scholar 

  27. Wu WJ, Tu YQ, Zhu JB (1992) J Nat Prod 55:1294–1298

    Article  CAS  Google Scholar 

  28. Gonzalez AG, Gonzalez CM, Bazzochi IL, Ravelo AG, Luis JG, Dominguez XA (1987) Phytochemistry 26:2133–2135

    Article  CAS  Google Scholar 

  29. Yamada K, Shizuri Y, Hirata Y (1978) Tetrahedron 34:1915–1920

    Article  CAS  Google Scholar 

  30. Wu MJ, Zhao TZ, Shang Y (2004) J Chinese Chem Lett 15:41–42

    CAS  Google Scholar 

  31. Ji ZQ, Wu WJ, Yang H (2007) Nat Prod Res 21:334–342

    Article  CAS  Google Scholar 

  32. Di Santo R, Fermeglia M, Ferrone M, Paneni MS, Costi R, Artico M, Roux A, Gabriele M, Tardif KD, Siddiqui A, Pricl S (2005) J Med Chem 48:6304–6314

    Article  Google Scholar 

  33. Clark M, Cramer RD III, van Opdenbosch N (1989) J Comput Chem 10:982–1012

    Article  CAS  Google Scholar 

  34. Nilsson J (1998) Multiway calibration in 3D QSAR. http://www.ub.rug.nl/eldoc/dis/science/j.nilsson

  35. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  36. Viswanadhan VN, Ghose AK, Revenkar GR, Robins R (1989) J Chem Inf Comput Sci 29:163–172

    CAS  Google Scholar 

  37. Klebe G (1994) J Mol Biol 237:212–235

    Article  CAS  Google Scholar 

  38. Staahle L, Wold S (1987) J Chemometr 1:185–196

    Article  CAS  Google Scholar 

  39. Li YF, Liu YL, Song ZQ (2006) Agrochemicals 45:148–154

    CAS  Google Scholar 

  40. Roy KK, Dixit A, Saxena AK (2008) J Mol Graph Model 27:197–208

    Article  CAS  Google Scholar 

  41. Golbraikh A, Tropsha A (2002) J Mol Graph Model 20:269–276

    Article  CAS  Google Scholar 

  42. Clark RD, Sprous DG, Leonard JM (2001) Validating models based on large dataset. In: Holtje HD, Sippl W (eds) Rational approaches to drug design (Proceedings of the 13th European Symposium on Quantitative Structure–Activity Relationships). Prous Science, Barcelona, pp 475–485

Download references

Acknowledgments

These projects were financed by the National Key S&T Research Foundation of China (2010CB126105) and the National Natural Science Foundation of China (30871663).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-hua Wang or Wen-jun Wu.

Additional information

Shao-peng Wei, Zhi-qin Ji and Hui-xiao Zhang have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Sp., Ji, Zq., Zhang, Hx. et al. Isolation, biological evaluation and 3D-QSAR studies of insecticidal/narcotic sesquiterpene polyol esters. J Mol Model 17, 681–693 (2011). https://doi.org/10.1007/s00894-010-0765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0765-x

Keywords

Navigation