Skip to main content
Log in

Studying the mechanism that enables paullones to selectively inhibit glycogen synthase kinase 3 rather than cyclin-dependent kinase 5 by molecular dynamics simulations and free-energy calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Glycogen synthase kinase 3 (GSK-3) is an attractive target for the treatment of diabetes, and paullones have been reported to be effective inhibitors of GSK-3. However, it is still a challenging task to improve selectivity among protein kinases, especially cyclin-dependent kinases (CDKs). Here we investigated the mechanism that enables paullones to selectively inhibit GSK-3 rather than cyclin-dependent kinase 5 (CDK5) using sequence alignment, molecular dynamics simulations, free-energy calculations and free-energy decomposition analysis. The results indicate that the interaction between paullones and Val135 of GSK-3 is obviously stronger than that between paullones and Cys83 of CDK5, suggesting that paullones could be utilized as potent selective inhibitors. Meanwhile, we observed that the decrease in the interaction between paullones and the Asp86 of CDK5 favors their selectivity towards GSK-3 rather than CDK5, as demonstrated using 1-azakenpaullone as an example. Although substitution at position 9 and replacement at position 2 may influence the activity of GSK-3, they only have a minor effect on the selectivity. We expect that the information obtained here could prove useful for developing specific paullone inhibitors of GSK-3.

Glycogen synthase kinase-3 is an attractive target for the treatment of diabetes and paullones have been reported to be effective inhibitors of GSK-3. However, how to improve the selectivity among protein kinases is still a challenging task, especially with the cyclin-dependent kinases. Here we investigated the mechanism that enables paullones to selectively inhibit GSK-3 rather than cyclin-dependent kinase 5 (CDK5) using sequence alignment, molecular dynamics simulations, free energy calculations and free energy decomposition analysis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zimmet P, Alberti K, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414(6865):782–787

    Article  CAS  Google Scholar 

  2. King H, Aubert RE, Herman WH (1998) Global burden of diabetes, 1995–2025. Prevalence, numerical estimates, and projections. Diab Care 21(9):1414–1431

    Google Scholar 

  3. Welsh GI, Proud CG (1993) Glycogen-synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation-factor elf-2b. Biochem J 294:625–629

    CAS  Google Scholar 

  4. Leost M, Schultz C, Link A, Wu YZ, Biernat J, Mandelkow EM et al (2000) Paullones are potent inhibitors of glycogen synthase kinase-3 beta and cyclin-dependent kinase 5/p25. Eur J Biochem 267(19):5983–5994

    Article  CAS  Google Scholar 

  5. Martinez A, Alonso M, Castro A, Perez C, Moreno FJ (2002) First non-ATP competitive glycogen synthase kinase 3 beta (GSK-3 beta) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J Med Chem 45(6):1292–1299

    Google Scholar 

  6. Coghlan MP, Culbert AA, Cross DAE, Corcoran SL, Yates JW, Pearce NJ et al (2000) Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol 7(10):793–803

    Article  CAS  Google Scholar 

  7. Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL et al (2001) Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/P25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease—a property common to most cycline-dependent kinase inhibitors? J Biol Chem 276(1):251–260

    Google Scholar 

  8. Frame S, Cohen P (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359:1–16

    Article  CAS  Google Scholar 

  9. Kunick C, Lauenroth K, Leost M, Meijer L, Lemcke T (2004) 1-Azakenpaullone is a selective inhibitor of glycogen synthase kinase-3 beta. Bioorg Med Chem Lett 14(2):413–416

    Google Scholar 

  10. Stukenbrock H, Mussmann R, Geese M, Ferandin Y, Lozach O, Lemcke T et al (2008) 9-Cyano-1-azapaullone (cazpaullone), a glycogen synthase kinase-3 (GSK-3) inhibitor activating pancreatic beta cell protection and replication. J Med Chem 51(7):2196–2207

    Google Scholar 

  11. Huo SH, Wang JM, Cieplak P, Kollman PA, Kuntz ID (2002) Molecular dynamics and free energy analyses of cathepsin D-inhibitor interactions: insight into structure-based ligand design. J Med Chem 45(7):1412–1419

    Article  CAS  Google Scholar 

  12. Kuhn B, Kollman PA (2000) Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 43(20):3786–3791

    Article  CAS  Google Scholar 

  13. Weis A, Katebzadeh K, Soderhjelm P, Nilsson I, Ryde U (2006) Ligand affinities predicted with the MM/PBSA method: dependence on the simulation method and the force field. J Med Chem 49(22):6596–6606

    Article  CAS  Google Scholar 

  14. Wang JM, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc 123(22):5221–5230

    Article  CAS  Google Scholar 

  15. Hou TJ, Chen K, McLaughlin WA, Lu BZ, Wang W (2006) Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. PLoS Comput Biol 2(1):46–55

    Article  CAS  Google Scholar 

  16. Hou TJ, Guo SL, Xu XJ (2002) Predictions of binding of a diverse set of ligands to gelatinase-A by a combination of molecular dynamics and continuum solvent models. J Phys Chem B 106(21):5527–5535

    Article  CAS  Google Scholar 

  17. Hou TJ, Yu R (2007) Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance. J Med Chem 50(6):1177–1188

    Article  CAS  Google Scholar 

  18. Wang JM, Hou TJ, Xu XJ (2006) Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr Comput-Aided Drug Des 2(3):287–306

    Article  CAS  Google Scholar 

  19. Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897

    Article  CAS  Google Scholar 

  20. Hou TJ, McLaughlin W, Lu B, Chen K, Wang W (2006) Prediction of binding affinities between the human amphiphysin-1 SH3 domain and its peptide ligands using homology modeling, molecular dynamics and molecular field analysis. J Proteome Res 5(1):32–43

    Article  CAS  Google Scholar 

  21. Hou TJ, Zhang W, Case DA, Wang W (2008) Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain. J Mol Biol 376(4):1201–1214

    Article  CAS  Google Scholar 

  22. Gohlke H, Case DA (2004) Converging free energy estimates: MM-PB(GB)SA studies on the protein–protein complex Ras-Raf. J Comput Chem 25(2):238–250

    Google Scholar 

  23. Hou TJ, McLaughlin WA, Wang W (2008) Evaluating the potency of HIV-1 protease drugs to combat resistance. Proteins 71(3):1163–1174

    Article  CAS  Google Scholar 

  24. Bertrand JA, Thieffine S, Vulpetti A, Cristiani C, Valsasina B, Knapp S et al (2003) Structural characterization of the GSK-3 beta active site using selective and non-selective ATP-mimetic inhibitors. J Mol Biol 333(2):393–407

    Article  CAS  Google Scholar 

  25. Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V et al (2003) Structural basis for recruitment of glycogen synthase kinase 3 beta to the axin–APC scaffold complex. EMBO J 22(3):494–501

    Google Scholar 

  26. Vanopdenbosch N, Cramer R, Glarrusso FF (1985) Sybyl, the integrated molecular modeling system. J Mol Graph 3(3):110–111

    Google Scholar 

  27. Mapelli M, Massimiliano L, Crovace C, Seeliger MA, Tsai LH, Meijer L et al (2005) Mechanism of CDK5/p25 binding by CDK inhibitors. J Med Chem 48(3):671–679

    Article  CAS  Google Scholar 

  28. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  CAS  Google Scholar 

  29. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012

    Article  CAS  Google Scholar 

  30. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  Google Scholar 

  31. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2004) Gaussian 03. Gaussian Inc., Wallingford

  33. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges—the resp model. J Phys Chem 97(40):10269–10280

    Google Scholar 

  34. Needlema SB, Wunsch CD (1970) A general method applicable to search for similarities in amino acid sequence of 2 proteins. J Mol Biol 48(3):443–453

    Article  Google Scholar 

  35. Kruskal JB (1983) An overview of sequence comparison—time warps, string edits, and macromolecules. Siam Rev 25(2):201–237

    Google Scholar 

  36. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-integration of cartesian equations of motion of a system with constraints—molecular-dynamics of N-alkanes. J Comput Phys 23(3):327–341

    Google Scholar 

  37. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  38. Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an N.log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Google Scholar 

  39. Essmann U, Pereral L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Google Scholar 

  40. Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20(2):217–230

    Article  CAS  Google Scholar 

  41. Gohlke H, Kiel C, Case DA (2003) Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras–Raf and Ras–RaIGDS complexes. J Mol Biol 330(4):891–913

    Google Scholar 

Download references

Acknowledgments

The project was supported by the National Science and Technology Major Special Project of China (No. 2009ZX09501-011).

We thank Prof. Xiaojie Xu at the Department of Chemistry of Peking University for providing access to computer software such as AMBER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjuan Ji.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

(DOC 4627 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Q., Cui, W., Cheng, Y. et al. Studying the mechanism that enables paullones to selectively inhibit glycogen synthase kinase 3 rather than cyclin-dependent kinase 5 by molecular dynamics simulations and free-energy calculations. J Mol Model 17, 795–803 (2011). https://doi.org/10.1007/s00894-010-0762-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0762-0

Keywords

Navigation