Skip to main content
Log in

First principle study of cysteine molecule on intrinsic and Au-doped graphene surface as a chemosensor device

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

To search for a high sensitivity sensor for cysteine, we investigated the adsorption of cysteine on intrinsic and Au-doped graphene sheets using density functional theory calculations. Binding energy is primarily determined by the type of atom which is closer to the adsorbed sheet. Compared with intrinsic graphene, Au-doped graphene system has higher binding energy value and shorter connecting distance, in which strong Au-S, Au-N and Au-O chemical bond interaction play the key role for stability. Furthermore, the density of states results show orbital hybridization between cysteine and Au-doped graphene sheet, but slight hybridization between the cysteine molecule and intrinsic graphene sheet. Large charge transfers exist in Au-doped graphene-cysteine system. The results of DOS and charge transfer calculations suppose that the electronic properties of graphene can be tuned by the adsorption site of cysteine. Therefore, graphene and Au-doped graphene system both possess sensing ability, except that Au-doped graphene is a better sensor for cysteine than intrinsic graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rivas GA, Rubianes MD, Rodríguez MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parrado C (2007) Talanta 74:291–307

    Article  CAS  Google Scholar 

  2. Schedin F, Geim AK, Morozov SV, Jiang D, Hill EH, Blake P, Novoselov KS (2007) Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  3. Alwarappan S, Erdem A, Liu C, Li CZ (2009) J Phys Chem C 113:8853–8857

    Article  CAS  Google Scholar 

  4. Liu Z, Robinson JT, Sun XM, Dai HJ (2008) J Am Chem Soc 130:10876–10877

    Article  CAS  Google Scholar 

  5. Leenaerts O, Partoens B, Peeters FM (2008) Phys Rev B 77:125416–125422

    Article  Google Scholar 

  6. Capone S, Forleo A, Francioso L, Rella R, Siciliano P, Spadavecchia J, Presicce DS, Taurino AM (2003) J Optoelect Adv Mater 5:1335–1348

    CAS  Google Scholar 

  7. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Science 287:622–625

    Article  CAS  Google Scholar 

  8. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Science 287:1801–1804

    Article  CAS  Google Scholar 

  9. Chi Q, Zhang J, Nielsen JU, Friis EP, Chorkendorff I, Canters GW, Andersen JET, Ulstrup J (2000) J Am Chem Soc 122:4047–4055

    Article  CAS  Google Scholar 

  10. Zhang J, Chi Q, Kutznetsov AM, Hansen AG, Wackerbarth H, Christensen HEM, Andersen JET, Ulstrup J (2002) J Phys Chem B 106:1131–1152

    Article  CAS  Google Scholar 

  11. Ritchie SMC, Kissick KE, Bachas LG, Sikdar SK, Parikh C, Bhattacharyya D (2001) Environ Sci Technol 35:3252–3538

    Article  CAS  Google Scholar 

  12. Moseley PT (1997) Meas Sci Technol 8:223–237

    Article  CAS  Google Scholar 

  13. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  14. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  15. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  16. Koelling DD, Harmon BN (1977) J Phys C Solid State Phys 10:3107–3114

    Article  CAS  Google Scholar 

  17. Bain CD, Evall J, Whitesides GM (1989) J Am Chem Soc 111:7155–7164

    Article  CAS  Google Scholar 

  18. Kühnle A, Linderoth TR, Hammer B, Besenbacher F (2002) Nature 415:891–893

    Article  Google Scholar 

  19. Görbitz CH, Dalhus B (1996) Acta Crystallogr Sect C Cryst Struct Commun 52:1756

    Article  Google Scholar 

  20. Pérez LA, López-Lozano X, Garzón IL (2009) Eur Phys J D 52:123–126

    Article  Google Scholar 

  21. Baas T, Gamble L, Hauch KD, Castner DG, Sasaki T (2002) Langmuir 18:4898

    Article  CAS  Google Scholar 

  22. Chi M, Zhao YP (2009) Comput Mater Sci 46:1085–1090

    Article  CAS  Google Scholar 

  23. Ratinac KR, Yang WR, Ringer SP, Braet F (2010) Environ Sci Technol 44:1167–1176

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by International Cooperation Program of Shanxi Province (Grant No. 2007081029, 2009081046), the National Natural Science Foundation of China (Grant No. 20671068, 50874079), and the Natural Science Foundation of Shanxi Province (Grant No. 2009021026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingshe Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Jia, H., Ma, F. et al. First principle study of cysteine molecule on intrinsic and Au-doped graphene surface as a chemosensor device. J Mol Model 17, 649–655 (2011). https://doi.org/10.1007/s00894-010-0760-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0760-2

Keywords

Navigation