Skip to main content
Log in

Antitumor activity of bent metallocenes: electronic structure analysis using DFT computations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The antitumor activities of bent metallocenes [Cp–M–Cp]2+ (M = Ti, V, Nb, Mo) and complexes of them with guanine, adenine, thymine and cytosine nucleotides have been probed using electronic structure calculations. DFT/BP86 calculations have revealed that the bent metallocene–nucleotide interaction strongly depends on the stability of the hydrolyzed form of the bent metallocene dichloride [Cp2M]2+ species, and in turn the stability of the [Cp2M]2+ species strongly depends on the electronic structure of [Cp2M]2+. Detailed electronic structure and Walsh energy analyses have been carried out for the hydrolyzed forms of four [Cp–M–Cp]2+ (M = Ti, V, Nb, Mo) species to find out why the bent structure is unusually stable. Energy changes that occur during the bending process in frontier molecular orbitals as well as the p(π)–d(π) overlap have been invoked to account for the anticipated antitumor activities of these species. The bonding situation and the interactions in bent metallocene–nucleotide adducts were elucidated by fragment analysis. Of the four nucleotides complexed with the four bent metallocenes, adenine and guanine show better binding abilities than the other two nucleotides. Metallocenes of second-row transition metals exhibit better binding with pyrimidine-base nucleotides. In particular, the Lewis acidic bent metallocenes interact strongly with nucleotides. The antitumor activity is directly related to the binding strength of the bent metallocene with nucleotide adducts, and the computed interaction energy values correlate very well with the experimentally observed antitumor activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kuo LY, Mercouri G, Kanatzidis MG, Sabat M, Tipton AL, Marks TJ (1991) J Am Chem Soc 113:9027–9045

    Article  CAS  Google Scholar 

  2. Rosenberg B (1985) Cancer 55:2303–2316

    Article  CAS  Google Scholar 

  3. Köpf-Maier P, Köpf H (1988) Struct Bond 70:105–185 (and references therein)

    Google Scholar 

  4. Köpf-Maier P, Köpf H (1986) Drugs Future 11:297–319 (and references therein)

    Google Scholar 

  5. Köpf-Maier P, Moormann A, Köpf H (1985) Eur J Cancer Clin Oncol 21:853–857

    Article  Google Scholar 

  6. Köpf-Maier P, Wagner W, Köpf H (1981) Cancer Chemother Pharmacol 5:237–241

    Article  Google Scholar 

  7. Köpf-Maier P, Wagner W, Hesse B, Voigtlander R, Köpf H (1980) J Cancer Res Clin Oncol 97:31–39

    Article  Google Scholar 

  8. Köpf-Maier P, Wagner W, Köpf H (1980) J Cancer Res Clin Oncol 96:43–51

    Article  Google Scholar 

  9. Köpf H, Köpf-Maier P (1979) Angew Chem Int Ed Engl 18:477–487

    Article  Google Scholar 

  10. Köpf-Maier P, Köpf H (1988) J Organomet Chem 342:167–176

    Article  Google Scholar 

  11. Murthy M, Toney JH, Rao LN, Marks TJ (1986) Proc Am Assoc Cancer Res 27:279

    Google Scholar 

  12. Toney JH, Rao LN, Murthy MS, Marks TJ (1985) Breast Cancer Res Treat 6:185

    Google Scholar 

  13. Murthy MS, Rao LN, Kuo LY, Toney JH, Marks TJ (1988) Inorg Chim Acta 152:117–124

    Article  CAS  Google Scholar 

  14. Bruhn SL, Toney JH, Lippard GJ (1990) Prog Inorg Chem 38:477–516

    Article  CAS  Google Scholar 

  15. Lippert B (1989) Prog Inorg Chem 37:1–97

    Article  CAS  Google Scholar 

  16. Reedijk J, Fichtinger-Schepman AMJ, van Oosterom AT, van do Putte P (1987) Struct Bond (Berlin) 67:1153–1181

    Google Scholar 

  17. Sherman SE, Lippert SJ (1987) Chem Rev 87:1153–1181

    Article  CAS  Google Scholar 

  18. Barnard CFJ, Cleare MJ, Hydes PC (1986) Chem Brit 22:1001–1004

    CAS  Google Scholar 

  19. Köpf-Maier P, Wagner W, Köpf H (1981) Naturwissenschaften 68:272–273

    Article  Google Scholar 

  20. Köpf- Maier P, Köpf H (1980) Naturwissenschaften 67:415–416

    Article  Google Scholar 

  21. Berdel WE, Schmoll HJ, Scheulen ME, Korfel A, Knoche MF, Harstrick A, Bach F, Baugmart J, Saβ G (1993) Onkologie 16:R172

    Article  Google Scholar 

  22. Harding MM, Mokdsi G (2007) Curr Med Chem 7:1289–1303

    Google Scholar 

  23. Yan YK, Melchart M, Heptemariam A, Sedler PJ (2005) Chem Commun 4764–4776

  24. Korfel A, Scheulen ME, Schmoll HJ, Gründel O, Harstrick A, Knoche M, Fels LM, Skorzec M, Bach F, Baumgart J, Saβ G, Seeber S, Thiel E, Berdel WE (1998) Clin Cancer Res 4:2701–2708

    CAS  Google Scholar 

  25. Christodoulou CV, Ferry DR, Fyfe DW, Young A, Doran J, Scheehan TMT, Eliopoulos A, Hale K, Baumgart J, Saβ G, Kerr DJ (1998) J Clin Oncol 16:2761–2769

    Google Scholar 

  26. Lümmen M, Sperling S, Luboldt H, Otto T, Rübben H (1998) Cancer Chemother Pharmacol 42:415–417

    Article  Google Scholar 

  27. Kröger N, Kleeberg UR, Mross K, Edler L, Saβ G, Hossfeld (2000) Onkologie 23:60–62

    Article  Google Scholar 

  28. Osmond J, D’Cruz OJ, Ghosh P, Uckun FM (1998) Biol Reprod 58:1515–1526

    Article  Google Scholar 

  29. Joseph WL, Hoffmann R (1976) J Am Chem Soc 98:1729–1742

    Article  Google Scholar 

  30. Clarke MJ, Zhu F, Frasca DR (1999) Chem Rev 99:2511–2534

    Article  CAS  Google Scholar 

  31. Retting MF (1974) Review of molecular orbital calculations for metallocenes. In: LaMar GN, DeW W, Horrocks Jr, Holm RH (eds) NMR of paramagnetic molecules: principles and applications. Academic, New York

  32. Ashley AE, Cooper RT, Wildgoose GG, Green JC, O’Hare D (2008) J Am Chem Soc 130:15662–15677

    Article  CAS  Google Scholar 

  33. Sobota P, Dra-g-Jarza-bek A, John Y, ozef Utko J, Jerzykiewicz LB, Duczmal M (2009) Inorg Chem 48:6584–6593

    Article  CAS  Google Scholar 

  34. Doman TN, Landis CR, Bosnich B (1992) J Am Chem Soc 114:7264–7212

    Article  CAS  Google Scholar 

  35. Bercaw JE, Resenberg E, Roberts JD (1974) J Am Chem Soc 96:612–614

    Article  CAS  Google Scholar 

  36. te Velde G, Bickelhaupt F, Baerends EJ, van Gisbergen SAJ, Fonseca GC, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    Article  Google Scholar 

  37. Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998) J Theor Chem Acc 99:391–403

    Article  CAS  Google Scholar 

  38. Scientific Computing & Modelling NM (2010) Amsterdam density functional. Scientific Computing & Modelling NV, Amsterdam (http://www.scm.com)

  39. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  40. van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597–4610

    Article  Google Scholar 

  41. van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783–9792

    Article  Google Scholar 

  42. van Lenthe E, Ehlers AE, Baerends EJ (1999) J Chem Phys 110:8943–8953

    Article  Google Scholar 

  43. Morokuma K (1971) J Chem Phys 55:1236–1244

    Article  CAS  Google Scholar 

  44. Ziegler T, Rauk A (1977) Theor Chim Acta 46:1–10

    CAS  Google Scholar 

  45. Esterhuysen C, Frenking G (2004) Theor Chem Acc 111:381–389

    CAS  Google Scholar 

  46. Krapp A, Bickelhaupt FM, Frenking G (2006) Chem Eur J 12:9196–9216

    Article  CAS  Google Scholar 

  47. Frenking G, Solà M, Vyboishchikov SF (2005) J Organomet Chem 690:6178–6204

    Article  CAS  Google Scholar 

  48. Frenking G, Wichmann K, Fröhlich N, Loschen C, Lein M, Frunzke J, Rayón VM (2003) Coord Chem Rev 55:238–239

    Google Scholar 

  49. Lein M, Frenking G, Dykstra CE, Kim KS, Scuseria GE (2005) Chapter 13. In: Theory and applications of computational chemistry: the first 40 years. Elsevier, Amsterdam

  50. Rayón VM, Frenking G (2003) Organometallics 22:3304–3308

    Article  Google Scholar 

  51. Lein M, Frunzke J, Frenking G (2003) Inorg Chem 42:2504–2511

    Article  CAS  Google Scholar 

  52. Jemmis ED, Alexandratos S, Schleyer PVR, Streitwieser AJ III, Schaefer HF (1978) J Am Chem Soc 100:5695–5700

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Council of Scientific and Industrial Research, India, for their financial support in the form of a research grant (Ref. No. 02(2158)/07/EMR-II). DS thanks the Council of Scientific and Industrial Research for financial support through a Senior Research Fellowship. Support from the Indian National Science Academy and the German Research Foundation (DFG) in the form of an exchange visit to Marburg in 2003 is gratefully acknowledged by PV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ponnambalam Venuvanalingam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senthilnathan, D., Vaideeswaran, S., Venuvanalingam, P. et al. Antitumor activity of bent metallocenes: electronic structure analysis using DFT computations. J Mol Model 17, 465–475 (2011). https://doi.org/10.1007/s00894-010-0734-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0734-4

Keywords

Navigation