Skip to main content

Advertisement

Log in

Docking and 3D-QSAR studies of diverse classes of human aromatase (CYP19) inhibitors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Aromatase (cytochrome 19) inhibitors have emerged as promising candidates for treatment of breast cancer. In search of potent aromatase inhibitors, docking and three-dimensional quantitative structure - activity relationship (3D-QSAR) studies using molecular shape, spatial, electronic, structural and thermodynamic descriptors have been performed on a diverse set of compounds having human aromatase inhibitory activities. An attempt has also been made to include two-dimensional (2D) descriptors in the QSAR studies. The chemometric tools used for model development are genetic function approximation (GFA) and genetic partial least squares (G/PLS). The docking study shows that the important interacting amino acids in the active site cavity are Met374, Arg115, Ile133, Ala306, Thr310, Asp309, Val370 and Ser478. One or more hydrogen bond formation with Met374 is one of the essential requirements for the ligands for optimum aromatase inhibition. The binding is further stabilized by van der Waals interactions with a few non-polar amino acid residues in the active site. The developed QSAR models indicate the importance of different shape, Jurs parameters, structural parameters, topological branching index and E-state index for different fragments. The results obtained from the QSAR analysis are supported by our docking observations. There should be one or two hydrogen bond acceptor groups (like –NO2, -CN) and optimal hydrophobicity for ideal aromatase inhibitors. A GFA model with spline option obtained using 3D descriptors was found to be the best model based on internal validation (Q2 = 0.668) while the best (externally) predictive model was a GFA model with spline option using combined set (2D and 3D) descriptors (R 2pred  = 0.687). Based on r 2m (overall) criterion, the best model was a G/PLS model (using 3D descriptors) with spline option (r 2m (overall) = 0.606).

In search of potent aromatase inhibitors, docking and three-dimensional quantitative structure - activity relationship (3D-QSAR) studies using molecular shape, spatial, electronic, structural and thermodynamic descriptors have been performed on a diverse set of compounds having human aromatase inhibitory activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cancer facts and figures (2007) American Cancer Society: Atlanta, GA, 2007. http://www.cancer.org/downloads/STT/CAFF2007PWsecured.pdf (accessed on Nov 11, 2009)

  2. Labrie F (1991) Intracrinology. Mol Cell Endocrinol 78:C113–C118. doi:10.1016/0303-7207(91)90116-A

    Article  CAS  Google Scholar 

  3. Cuzick J, Wang DY, Bulbrook RD (1986) The prevention of breast cancer. Lancet 8472:83–86. doi:10.1016/S0140-6736(86)90729-4

    Article  Google Scholar 

  4. Clemons M, Goss P (2001) Mechanisms of disease: estrogen and the risk of breast cancer. N Engl J Med 344:276–285. doi:10.1056/NEJM200101253440407

    Article  CAS  Google Scholar 

  5. Osborne CK, Yochmowitz MG, Knight WA, McGuire WL (1980) The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer 46:2884–2888. doi:10.1002/1097-0142(19801215)46:12+<2884::AID-CNCR2820461429>3.0.CO;2-U

    Article  CAS  Google Scholar 

  6. Brueggemeier RW, Hackett JC, Diaz-Cruz ES (2005) Aromatase inhibitors in the treatment of breast cancer. Endocr Rev 26:331–345. doi:10.1210/er.2004-0015

    Article  CAS  Google Scholar 

  7. Trunet PF, Vreeland F, Royce C, Chaudri HA, Cooper J, Bhatnagar AS (1997) Clinical use of aromatase inhibitors in the treatment of advanced breast cancer. J Steroid Biochem Mol Biol 61:241–245. doi:10.1016/S0960-0760(96)00249-X

    Article  CAS  Google Scholar 

  8. Brodie AMH, Njar VCO (1998) Aromatase inhibitors in advanced breast cancer: mechanism of action and clinical implications. J Steroid Biochem Mol Biol 66:1–10. doi:10.1016/S0960-0760(98)00022-3

    Article  CAS  Google Scholar 

  9. Banting L, Nicholls PJ, Shaw MA, Smith HJ (1989) Recent developments in aromatase inhibition as a potential treatment for oestrogen-dependent breast cancer. Prog Med Chem 26:253–298. doi:10.1016/S0079-6468(08)70242-X

    Article  CAS  Google Scholar 

  10. Banting L (1996) Inhibition of aromatase. Prog Med Chem 33:147–184. doi:10.1016/S0079-6468(08)70305-9

    Article  CAS  Google Scholar 

  11. O’Reilly JM, Brueggemeier RW (1996) 7alpha-arylaliphatic androsta-1,4-diene-3,17-diones as enzyme-activated irreversible inhibitors of aromatase. J Steroid Biochem Mol Bio l59:93–102. doi:10.1016/S0960-0760(96)00087-8

    Article  Google Scholar 

  12. Santen RJ, Samojlik E, Lipton A, Harvey H, Ruby EB, Wells SA, Kendall J (1977) Kinetic, hormonal and clinical studies with aminoglutethimide in breast cancer. Cancer 39:2948–2958. doi:10.1002/1097-0142(197706)39:6<2948::AID-CNCR2820390681>3.0.CO;2-9

    Article  CAS  Google Scholar 

  13. Plourde PV, Dyroff M, Dowsett M, Demers L, Yates R, Webster A (1995) ARIMIDEX: a new oral, once-a-day aromatase inhibitor. J Steroid Biochem Mol Biol 53:175–179. doi:10.1016/0960-0760(95)00045-2

    Article  CAS  Google Scholar 

  14. Lipton A, Demers LM, Harvey HA, Kambic KB, Grossberg H, Brady C et al (1995) Letrozole (CGS 20267). A phase I study of a new potent oral aromatase inhibitor of breast cancer. Cancer 75:2132–2138. doi:10.1002/1097-0142(19950415)75:8<2132:AID-CNCR2820750816>3.0.CO;2-U

    Article  CAS  Google Scholar 

  15. Evans TR, Di Salle E, Ornati G, Lassus M, Benedetti MS, Pianezzola E et al (1992) Phase I and endocrine study of exemestane (FCE 24304), a new aromatase inhibitor, inpostmenopausal women. Cancer Res 52:5933–5939

    CAS  Google Scholar 

  16. Goss PE, Ingle JN, Martino S, Robert NJ, Muss HB, Piccart MJ et al (2003) A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N Engl J Med 349:1793–1802. doi:10.1056/NEJMoa032312

    Article  CAS  Google Scholar 

  17. Coombes RC, Hall E, Gibson LJ, Paridaens R, Jassem J, Delozier T et al (2004) A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. N Engl J Med 350:1081–1092. doi:10.1056/NEJMoa040331

    Article  CAS  Google Scholar 

  18. Baum M, Budzar AU, Cuzick J, Forbes J, Houghton JH, Klijn JG et al (2002) Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359:2131–2139. doi:10.1016/S0140-6736(02)09088-8

    Article  CAS  Google Scholar 

  19. Nabholtz JM, Buzdar A, Pollak M, Harwin W, Burton G, Mangalik A et al (2000) Anastrozole is superior to tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: results of a north american multicenter randomized trial. arimidex study group. J Clin Oncol 18:3758–3767

    CAS  Google Scholar 

  20. Arora A, Potter JF (2004) Aromatase inhibitors: current indications and future prospects for treatment of postmenopausal breast cancer. J Am Geriatr Soc 52:611–616. doi:10.1111/j.1532-5415.2004.52171.x

    Article  Google Scholar 

  21. Goss PE (1999) Risks versus benefits in the clinical application of aromatase inhibitors. Endocr Relat Cancer 6:325–332. doi:10.1677/erc.0.0060325

    Article  CAS  Google Scholar 

  22. Ghosh D, Griswold J, Erman M, Pangborn W (2009) Structural basis for androgen specificity and estrogen synthesis in human aromatase. Nature 457:219–223. doi:10.1038/nature07614

    Article  CAS  Google Scholar 

  23. Favia AD, Cavalli A, Masetti M, Carotti A, Recanatini M (2006) Three-dimensional model of the human aromataseenzyme and density functional parameterization of the iron-containing protoporphyrin IX for a molecular dynamics study of heme-cysteinato cytochromes. Proteins 62:1074–1087. doi:10.1002/prot.20829

    Article  CAS  Google Scholar 

  24. Hong Y, Yu B, Sherman M, Yuan YC, Zhou D, Chen S (2007) Molecular basis for the aromatization reaction and exemestane-mediated irreversible inhibition of human aromatase. Mol Endocrinol 21:401–414. doi:10.1210/me.2006-0281

    Article  CAS  Google Scholar 

  25. Hong Y, Cho M, Yuan Y, Chen S (2008) Molecular basis for the interaction of four different classes of substrates and inhibitors with human aromatase. Biochem Pharmacol 75:1161–1169. doi:10.1016/j.bcp. 2007.11.010

    Article  CAS  Google Scholar 

  26. Castellano S et al (2008) CYP19 (aromatase): Exploring the scaffold flexibility for novel selective inhibitors. Bioorg Med Chem 16:8349–8358. doi:10.1016/j.bmc.2008.08.046

    Article  CAS  Google Scholar 

  27. Karkola S, Wähälä K (2009) The binding of lignans, flavonoids and coumestrol to CYP450 aromatase: A molecular modelling study. Mol Cell Endocrinol 301:235–244. doi:10.1016/j.mce.2008.10.003

    Article  CAS  Google Scholar 

  28. Cole PA, Robinson CH (1990) Mechanism and Inhibition of Cytochrome P-450 Aromatase. J Med Chem 33:2933–2942. doi:10.1021/jm00173a001

    Article  CAS  Google Scholar 

  29. Le Borgne M, Marchand P, Duflos M, Delevoye-Seiller B, Piessard-Robert S, Le Baut G, Hartmann RW, Palzer M (1997) Synthesis and in vitro evaluation of 3-(1-azolylmethy1)-1H-indoles and 3-(1-azolyl-l-phenylmethyl)-1H-indoles as inhibitors of P450 arom. Arch Pharm 330:141–145. doi:10.1002/ardp. 19973300506

    Article  Google Scholar 

  30. Marchand P, Le Borgne M, Palzer M, Le Baut G, Hartmann RW (2003) Preparation and pharmacological profile of 7-(α-Azolylbenzyl)-1H-indoles and indolines as new aromatase inhibitors. Bioorg Med Chem Lett 13:1553–1555. doi:10.1016/S0960-894X(03)00182-3

    Article  CAS  Google Scholar 

  31. Le Borgne M, Marchand P, Delevoye-Seiller B, Robert JM, Le Baut G, Hartmann RW, Palzer M (1999) New selective nonsteroidal aromatase inhibitors: synthesis and inhibitory activity of 2, 3 or 5-(α-azolylbenzyl)-1H-indoles. Bioorg Med Chem Lett 9:333–336. doi:10.1016/S0960-894X(98)00737-9

    Article  Google Scholar 

  32. Hartmann RW, Palusczak A, Lacan F, Ricci G, Ruzziconi R (2004) CYP 17 and CYP 19 Inhibitors. Evaluation of fluorine effects on the inhibiting activity of regioselectively fluorinated 1-(Naphthalen-2-ylmethyl) imidazoles. J Enzyme Inhib Med Chem 19:145–155. doi:10.1080/147563604200196222

    Article  CAS  Google Scholar 

  33. Sonnet P, Guillon J, Enguehard C, Dallemagne P, Bureau R, Rault S, Auvray P, Moslemi S, Sourdaine P, Galopin S, Séralini GE (1998) Design and synthesis of a new type of non steroidal human aromatase inhibitors. Bioorg Med Chem Lett 8:1041–1044. doi:10.1016/S0960-894X(98)00157-7

    Article  CAS  Google Scholar 

  34. Recanatini M, Bisi A, Cavalli A, Belluti F, Gobbi S, Rampa A, Valenti P, Palzer M, Palusczak A, Hartmann RW (2001) A new class of nonsteroidal aromatase inhibitors: design and synthesis of chromone and xanthone derivatives and inhibition of the P450 enzymes aromatase and 17r-Hydroxylase/C17, 20-Lyase. J Med Chem 44:672–680. doi:10.1021/jm000955s

    Article  CAS  Google Scholar 

  35. Cavalli A, Bisi A, Bertucci C, Rosini C, Paluszcak A, Gobbi S, Giorgio E, Rampa A, Belluti F, Piazzi L, Valenti P, Hartmann RW, Recanatini M (2005) Enantioselective nonsteroidal aromatase inhibitors identified through a multidisciplinary medicinal chemistry approach. J Med Chem 48:7282–7289. doi:10.1021/jm058042r

    Article  CAS  Google Scholar 

  36. Leze MP, Le Borgne M, Pinson P, Palusczak A, Duflos M, Le Baut G, Hartmann RW (2006) Synthesis and biological evaluation of 5-[(aryl)(1H-imidazol-1-yl)methyl]-1H-indoles: Potent and selective aromatase inhibitors. Bioorg Med Chem Lett 16:1134–1137. doi:10.1016/j.bmcl.2005.11.099

    Article  CAS  Google Scholar 

  37. Setzu MG, Stefancich G, Colla PL, Castellano S (2002) Synthesis and antifungal properties of N-[(1, 1?-biphenyl)-4-ylmethyl]-1H-imidazol-1-amine derivatives. Il Farmaco 57:1015–1018. doi:10.1016/S0014-827X(02)01294-6

    Article  Google Scholar 

  38. Castellano S, Stefancich G, Chillotti A, Poni G (2003) Synthesis and antimicrobial properties of 3-aryl-1-(1, 1?-biphenyl-4-yl)-2-(1H-imidazol-1-yl)propanes as ‘carba-analogues’ of the Narylmethyl-N-[(1, 1?-biphenyl)-4-ylmethyl])-1H-imidazol-1-amines, a new class of antifungal agents. Il Farmaco 58:563–568. doi:10.1016/S0014-827X(03)00094-6

    Article  CAS  Google Scholar 

  39. Castellano S, Colla PL, Musiu C, Stefancich G (2000) Azole antifungal agents related to naftifine and butenafine. Arch Pharm 333:162–166. doi:10.1002/1521-4184(20006)333:6<162::AID-ARDP162>3.0.CO;2-S

    Article  CAS  Google Scholar 

  40. Castellano S, Stefancich G, Musiu C, Colla PL (2000) A new class of antifungal agents. Synthesis and antimycotic activity of disubstituted N-azolylamines. Archiv der Pharmazie 333:299–304. doi:10.1002/1521-4184(20009)333:9<299::AID-ARDP299>3.0.CO;2-F

    Article  CAS  Google Scholar 

  41. Discovery Studio 2.1 is a product of Accelrys Inc, San Diego, CA, USA

  42. Cerius2 Version 4.10 is a product of Accelrys Inc, San Diego, USA. http://www.accelrys.com/cerius2

  43. Leonard JT, Roy K (2006) On selection of training and test sets for the development of predictive QSAR models. QSAR Comb Sci 25:235–251. doi:10.1002/qsar.200510161

    Article  CAS  Google Scholar 

  44. Roy K, Mandal AS (2008) Development of linear and nonlinear predictive QSAR models and their external validation using molecular similarity principle for anti-HIV indolyl aryl sulfones. J Enz Inh Med Chem 23:980–995. doi:10.1080/14756360701811379

    Article  CAS  Google Scholar 

  45. Hopfinger AJ, Tokarsi JS (1997) Three-dimensional Quantitative structure acticity relationship analysis. In: Charifson PS (ed) Practical Applications of Computer-Aided Drug Design. Dekker, New York, pp 105–164

    Google Scholar 

  46. Fan Y, Shi LM, Kohn KW, Pommier Y, Weinstein JN (2001) Quantitative structure-antitumor activity relationships of camptothecinanalogues: cluster analysis and genetic algorithm-based studies. J Med Chem 44:3254–3263. doi:10.1021/jm0005151

    Article  CAS  Google Scholar 

  47. Rogers D, Hopfinger AJ (1994) Application of genetic function approximation to quantitative structure - activity relationship and quantitative structure - property relationship. J Chem Inf Comput Sci 34:854–866. doi:10.1021/ci00020a020

    CAS  Google Scholar 

  48. Dunn WJ III, Rogers D (1996) Genetic partial least squares in QSAR. In: Devillers J (ed) Genetic algorithms in molecular modeling. Academic, London, pp 109–130

    Chapter  Google Scholar 

  49. Hasegawa K, Miyashita Y, Funatsu K (1997) GA strategy for variable selection in QSAR studies: GA-based PLS analysis of calcium channel antagonists. J Chem Inf Comput Sci 37:306–310. doi:10.1021/ci960047x

    CAS  Google Scholar 

  50. Snedecor GW, Cochran WG (1967) Statistical methods. Oxford & IBH, New Delhi

    Google Scholar 

  51. Wold S (1995) PLS for Multivariate Linear Modeling. In: van de Waterbeemd H (ed) Chemometric methods in molecular design. VCH, Weinheim, pp 195–218

  52. Debnath AK (2001) In: Ghose AK, Viswanadhan VN (eds) Combinatorial library design and evaluation. Dekker, New York, pp 73–129

    Google Scholar 

  53. Roy K (2007) On Some aspects of validation of predictive QSAR models. Expert Opin Drug Discov 2:1567–1577. doi:10.1517/17460441.2.12.1567

    Article  CAS  Google Scholar 

  54. Roy PP, Roy K (2008) On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci 27:302–313. doi:10.1002/qsar.200710043

    Article  CAS  Google Scholar 

  55. Roy K, Roy PP (2008) Comparative QSAR studies of CYP1A2 inhibitor flavonoids using 2D and 3D descriptors. Chem Biol Drug Des 72:370–382. doi:10.1111/j.1747-0285.2008.00717.x

    Article  CAS  Google Scholar 

  56. Roy PP, Paul S, Mitra I, Roy K (2009) On two novel parameters for validation of predictive QSAR models. Molecules 14:1660–1701. doi:10.3390/molecules14051660

    Article  CAS  Google Scholar 

  57. Mitra I, Roy PP, Kar S, Ojha P, Roy K (2010) On further application of r m 2 as a metric for validation of QSAR models. J Chemometrics 24:22–33. doi:10.1002/cem.1268

    CAS  Google Scholar 

  58. Roy PP, Leonard JT, Roy K (2008) Exploring the impact of the size of training sets for the development of predictive QSAR models. Chemom Intell Lab Sys 90:31–42. doi:10.1016/j.chemolab.2007.07.004

    Article  CAS  Google Scholar 

  59. Murthy JN, Nagaraju M, Sastry GM, Rao AR, Sastry GN (2006) Active site acidic residues and structural analysis of modelled human aromatase: a potential drug target for breast cancer. J Comput Aided Mol Des 19:857–870. doi:10.1007/s10822-005-9024-0

    Article  Google Scholar 

  60. Vanden Bossche H, Koymans L (1998) Cytochromes P450 in fungi. Mycoses 41:32–38. doi:10.1111/j.1439-0507.1998.tb00581.x

    Article  Google Scholar 

  61. Eriksson L, Jaworska J, Worth AP, Cronin MT, McDowell RM, Gramatica P (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111:1361–1375. doi:10.1289/ehp. 5758

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by a Major Research Project of the University Grants Commission (UGC), New Delhi. PPR thanks the UGC, New Delhi for a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, P.P., Roy, K. Docking and 3D-QSAR studies of diverse classes of human aromatase (CYP19) inhibitors. J Mol Model 16, 1597–1616 (2010). https://doi.org/10.1007/s00894-010-0667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0667-y

Keywords

Navigation