Skip to main content
Log in

Quantum chemical investigation of intramolecular thione-thiol tautomerism of 1,2,4-triazole-3-thione and its disubstituted derivatives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The one step intramolecular thione-thiol tautomerism of 1,2,4-triazole-3-thione and its disubstituted derivatives has been studied through the use of electronic structure methods. Due to the absence of experimental data for the parent molecule of 1,2,4-triazole-3-thione the structure and energetics of aforementioned tautomers were derived using various basis sets and levels including HF, B3LYP, and MP2 methods. The gas phase results show that in all different levels of theory the most stable tautomer is the thione form. It has also been revealed that B3LYP/6-31G(d,p) level is quite well suited and reliable to investigate these kinds of tautomerism. To account the influence of substituents on the mentioned tautomerization, the tautomerism and conformational properties as well as vibrational analysis of 20 halophenyl and isopyridyl derivatives were investigated using B3LYP/6-31G(d,p) calculations. In all cases the calculations indicate that substituents have no considerable effects on relative stabilities and energy barriers for the thione-thiol proton transfer and the thione forms are the predominant species in the gas phase. In order to figure out the relative stabilities of the species involved in the tautomerism, geometrical and natural bond orbital (NBO) analyses have been employed. It has also been shown that the computed vibrational frequencies of tautomers with different scaling factors could be used to interpret the vibrational frequencies in IR spectrum of similar species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Potts KT (1961) Chem Rev 61(2):87–127

    Article  CAS  Google Scholar 

  2. Chai B, Qian X, Cao S, Liu H, Song G (2003) ARKIVOC ii:141–145

    Google Scholar 

  3. Shaker RM (2006) ARKIVOC ix:59–112

    Google Scholar 

  4. Eweiss NF, Bahajaj AA, Elsherbini EA (1986) J Heterocycl Chem 23:1451–1458

    Article  CAS  Google Scholar 

  5. Kane JM, Dudley MW, Sorensen SM, Miller FP (1988) J Med Chem 31:1253–1258

    Article  CAS  Google Scholar 

  6. Sorensen SM, Zwolshen JM, Kane JM (1990) Neuropharmacology 29(6):555–560

    Article  CAS  Google Scholar 

  7. Zhang ZY, Yan H (1987) Acta Chimica Sinica 45:403–407

    CAS  Google Scholar 

  8. Talawar MB, Bennur SC, Kankanwadi SK, Patil PA (1995) Indian J Pharm Sci 57:194–197

    CAS  Google Scholar 

  9. Al-Khawas MS, Hazaa BAA, Al-Din AS (1979) Sci Pharm 47:314–320

    Google Scholar 

  10. Kurse LI, Finkelestein JA (1990) Eur Pat App Ep-395, 505 (Cl. C07 D401/60) Chem Abst (1990)113, 115311w

  11. Iqbal R, Zamani K, Rama NH (1996) Turk J Chem 20(4):295–301

    CAS  Google Scholar 

  12. Iqbal R, Rama NH, Yunus U, Saeed A, Zamani K (1997) J Chem Soc Pak 19(2):145–149

    CAS  Google Scholar 

  13. Iqbal R, Rama NH, Ahmed N, Zamani K, Ebrahim S, Iqbal N (1998) Indian J Chem Sect B 37(5):506–509

    Google Scholar 

  14. Iqbal R, Rama NH, Zamani K, Hussain MT (1999) Indian J Heterocycl Chem 8(4):269–272

    CAS  Google Scholar 

  15. Zamani K, Faghihi K, Bamdad F, Iqbal R (2001) Indian J Heterocycl Chem 10(3):175–180

    CAS  Google Scholar 

  16. Mobinikhaledi A, Zamani K, Iqbal R, Tofighi T (2002) J Chem Soc Pak 24(4):269–274

    CAS  Google Scholar 

  17. Zamani K, Faghihi K, Sangi MR, Zolgharnein J (2003) Turk J Chem 27:119–125

    CAS  Google Scholar 

  18. Zamani K, Faghihi K, Tofighi T, Shariatzadeh MR (2004) Turk J Chem 28(1):95–100

    CAS  Google Scholar 

  19. Elquero J, Marzin C, Katritzky AR, Linda P (1976) The tautomerism of heterocycles. Acedemic Press, New York, p 407

    Google Scholar 

  20. Shtefan ED, Vvedenskii VY (1996) Russ Chem Rev 65:307–314

    Article  Google Scholar 

  21. Siwek A, Wujec M, Wawrzycka-Gorczyca I, Dobosz M, Paneth P (2008) Heteroa Chem 19(4):337–344

    Article  CAS  Google Scholar 

  22. Senthilvelan A, Thirumalai D, Ramakrishnan VT (2004) Tetrahedron 60:851–860

    Article  CAS  Google Scholar 

  23. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  24. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  26. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  27. Pople JA, Krishnan R, Schlegel HB, Binkley JS (1979) Int J Quantum Chem Symp 13:325

    Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, MW GP, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian Inc, Pittsburgh

    Google Scholar 

  29. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  30. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  31. Davidson ER, Feller D (1986) Chem Rev 86(4):681–696

    Article  CAS  Google Scholar 

  32. Hehre WJ, Radom L, Schleyer PV, Pople J (1998) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  33. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  34. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  35. Szabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover, Mineola

    Google Scholar 

  36. Rablen PR, Lockman JW, Jorgensen WL (1998) J Phys Chem A 102:3782–3797

    Article  CAS  Google Scholar 

  37. Abramov YA, Volkov AV, Coppens P (1999) Chem Phys Lett 311:81–86

    Article  CAS  Google Scholar 

  38. Handy NC, Maslen PE, Amos RD, Andrews JS, Murray CW, Laming GJ (1992) Chem Phys Lett 197:506–515

    Article  CAS  Google Scholar 

  39. Zahedi M, Bahrami H, Shabazian S, Safari N, Weng NS (2003) THEOCHEM 633:21–33

    Article  CAS  Google Scholar 

  40. Zhao Y, Zheng X, Dai W, Han GF (2008) Acta Crystallogr, Sect E: Struct Rep Online 64:o1169

    Article  Google Scholar 

  41. Lewars EG (2003) Introduction to the theory and applications of molecular and quantum mechanics. Springer

  42. Kereselidze JA, Zarqua TS, Kikalishvili TJ, Churgulia EJ, Makaridze MC (2002) Russ Chem Rev 71(12):993–1003

    Article  CAS  Google Scholar 

  43. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98(45):11623–11627

    Article  CAS  Google Scholar 

  44. Brown ST, Rienstra-Kiracofe JC, Schaefer HF III (1999) J Phys Chem A 103(20):4065–4077

    Article  CAS  Google Scholar 

  45. Palafox MA (1999) J Phys Chem A 103:11366–11377

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Seik Weng Ng for making his software (G98W) and hardware (machine time) facilities available to us. The financial support of the Research Councils of Shahid Beheshti University is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Zahedi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

The calculated average errors in bond distances and bond angles of 2,4-dihydro-3H-5-phenyl-4-amino-1,2,4-triazole-3-thione as well as vibrational frequency of disubstituted derivatives have been supplied in Tables T1-T19 (DOC 456 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davari, M.D., Bahrami, H., Haghighi, Z.Z. et al. Quantum chemical investigation of intramolecular thione-thiol tautomerism of 1,2,4-triazole-3-thione and its disubstituted derivatives. J Mol Model 16, 841–855 (2010). https://doi.org/10.1007/s00894-009-0585-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0585-z

Keywords

Navigation