Skip to main content
Log in

Generation of a 3D model for human GABA transporter hGAT-1 using molecular modeling and investigation of the binding of GABA

  • Short Comments
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A three-dimensional model of the human Na+/Cl-dependent γ-aminobutyric acid (GABA) transporter hGAT-1 was developed by homology modeling and refined by subsequent molecular modeling using the crystal structure of a bacterial homologue leucine transporter from Aquifex aeolicus (LeuTAa) as the template. Protein structure quality checks show that the resulting structure is particularly suited for the analysis of the substrate binding pocket and virtual screening experiments. Interactions of GABA and the substrate binding pocket were investigated using docking studies. The difference of 6 out of 13 substrate interacting side chains between hGAT-1 and LeuTAa lead to the different substrate preference which can be explained using our three-dimensional model of hGAT-1. In particular the replacement of serine 256 and isoleucine 359 in LeuTAa with glycine and threonine in hGAT-1 seems to facilitate the selection of GABA as the main substrate by changing the hydrogen bonding pattern in the active site to the amino group of the substrate. For a set of 12 compounds flexible docking experiments were performed using LigandFit in combination with the Jain scoring function. With few exceptions the obtained rank order of potency was in line with experimental data. Thus, the method can be assumed to give at least a rough estimate of the potency of the potential of GABA uptake inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Nelson H, Mandiyan S, Nelson N (1990) FEBS Lett 269:181–184

    Article  CAS  Google Scholar 

  2. Borden LA, Smith KE, Hartig PR, Branchek TA, Weinshank RL (1992) J Biol Chem 267:21098–21104

    CAS  Google Scholar 

  3. Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel MC, Davidson N, Lester HA, Kanner BI (1990) Science 249:1303–1306

    Article  CAS  Google Scholar 

  4. Masson J, Sagné C, Hamon M, Mestikawy SE (1999) Pharmacol Rev 51:439–464

    CAS  Google Scholar 

  5. Chen N, Reith MEA, Quick MW (2004) Pflugers Arch 447:519–531

    Article  CAS  Google Scholar 

  6. Gether U, Andersen PH, Larsson OM, Schousboe A (2006) Trends Pharmacol Sci 27:375–383

    Article  CAS  Google Scholar 

  7. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Nature 437:215–223

    Article  CAS  Google Scholar 

  8. Dodd JR, Christi DL (2007) J Biol Chem 282:15528–15533

    Article  CAS  Google Scholar 

  9. Beuming T, Shi L, Javitch JA, Weinstein H (2006) Mol Pharmacol 70:1630–1642

    Article  CAS  Google Scholar 

  10. Palló A, Bencsura A, Héja L, Beke T, Perczel A, Kardos J, Simon A (2007) Biochem Biophys Res Commun 364:952–958

    Article  Google Scholar 

  11. Boeckmann B, Bairoch A, Apweiler R, Blatter M, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M (2003) Nucleic Acids Res 31:365–370

    Article  CAS  Google Scholar 

  12. Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) J Mol Biol 112:535–542

    Article  CAS  Google Scholar 

  13. Sali A, Blundell TL (1993) J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  14. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) J Comput Chem 26:1701–1718

    Article  Google Scholar 

  15. Hess B, Kutzner C, van der Spoel D (2008) Lindahl E 4:435–447

    CAS  Google Scholar 

  16. Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Kruger P, van Gunsteren WF (1999) J Phys Chem A 103:3596–3607

    Article  CAS  Google Scholar 

  17. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8592

    Article  CAS  Google Scholar 

  18. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J App Cryst 26:283–291

    Article  CAS  Google Scholar 

  19. Lüthy R, Bowie JU, Eisenberg D (1992) Nature 356:83–85

    Article  Google Scholar 

  20. Maple JR, Hwang MJ, Stockfisch TP, Dinur U, Waldman M, Ewig CS, Hagler AT (1994) J Comput Chem 15:162–182

    Article  CAS  Google Scholar 

  21. Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) J Mol Graph Model 2:289–307

    Article  Google Scholar 

  22. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  23. Moustakas DT, Lang PT, Pegg S, Pettersen E, Kuntz ID, Brooijmans N, Rizzo RC (2006) J Comput-Aided Mol Design 20:601–619

    Article  CAS  Google Scholar 

  24. Zsoldos Z, Reid D, Simon A, Sadjad SB, Johnson AP (2007) J Mol Graph Model 26:198–212

    Article  CAS  Google Scholar 

  25. Rarey M, Kramer B, Lengauer T, Klebe G (1996) J Mol Biol 261:470–489

    Article  CAS  Google Scholar 

  26. Jones G, Willet P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  27. Jain AN (1996) J Comput-Aided Mol Design 10:427–440

    Article  CAS  Google Scholar 

  28. Kanner B, Zomot E (2008) Chem Rev 108(5):1654–1668

    Article  CAS  Google Scholar 

  29. Kragler A, Höfner G, Wanner KT (2008) Eur J Med Chem 43:2404–2411

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus T. Wanner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wein, T., Wanner, K.T. Generation of a 3D model for human GABA transporter hGAT-1 using molecular modeling and investigation of the binding of GABA. J Mol Model 16, 155–161 (2010). https://doi.org/10.1007/s00894-009-0520-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0520-3

Keywords

Navigation