Skip to main content
Log in

A quantum chemical study of repair of O6-methylguanine to guanine by tyrosine: Evaluation of the winged helix-turn-helix model

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The winged helix-turn-helix model for the repair of O6-MeG to guanine involving the reaction of O6-MeG with a tyrosine residue of the protein O6-alkylguanine-DNA alkyltransferase (AGT) was examined by studying the reaction mechanism and barrier energies. Molecular geometries of the species and complexes involved in the reaction, i.e. the reactant, intermediate and product complexes as well as transition states, were optimized employing density functional theory in gas phase. It was followed by single point energy calculations using density functional theory along with a higher basis set and second order Mφller-Plesset perturbation theory (MP2) along with two different basis sets in gas phase and aqueous media. For the solvation calculations in aqueous media, the integral equation formalism of the polarizable continuum model (IEF-PCM) was employed. Vibrational frequency analysis was performed for each optimized structure and genuineness of transition states was ensured by visualizing the vibrational modes. It is found that tyrosine can repair O6-MeG to guanine by a two-step reaction. The present results have been compared with those obtained considering the helix-turn-helix model where the repair reaction primarily involves cysteine and occurs in a single-step. It is concluded that the repair through tyrosine envisaged in the winged helix-turn-helix model would be less efficient than that through cysteine envisaged in the helix-turn-helix model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O’Brien P (2006) Chem Rev 106:302–323

    Article  Google Scholar 

  2. Simons J (2006) Acc Chem Res 39:772–779

    Article  CAS  Google Scholar 

  3. Burrows CJ, Muller JG (1998) Chem Rev 98:1109–1151

    Article  CAS  Google Scholar 

  4. Halliwell B (1999) Mutat Res 443:37–52

    CAS  Google Scholar 

  5. Wyatt MD, Pittman DL (2006) Chem Res Toxicol 19:1580–1594

    Article  CAS  Google Scholar 

  6. Jena NR, Mishra PC (2006) J Comput Chem 28:1321–1335

    Article  Google Scholar 

  7. Jena NR, Mishra PC (2005) J Phys Chem B 109:14205–14218

    Article  CAS  Google Scholar 

  8. Shukla PK, Mishra PC (2008) J Phys Chem B 112:4779–4789

    Article  CAS  Google Scholar 

  9. Shukla MK, Mishra PC (1996) J Mol Struct 377:247–259

    Article  CAS  Google Scholar 

  10. Mishina Y, Duguid EM, He C (2006) Chem Rev 106:215–232

    Article  CAS  Google Scholar 

  11. Neeley WL, Essigmann JM (2006) Chem Res Toxicol 19:491–505

    Article  CAS  Google Scholar 

  12. Bignami M, O' Driscoll M, Aquilina G, Karran P (2000) Mutat Res 462:71–82

    Article  CAS  Google Scholar 

  13. Loechler EL et al (1984) Proc Natl Acad Sci (U.S.A.) 81:6271–6275

    Article  CAS  Google Scholar 

  14. Samson L (1992) Mol Microbiol 6:825–831

    Article  CAS  Google Scholar 

  15. Pegg AE, Dolan ME, Moschel RC (1995) Prog Nucl Acid Res Mol Biol 51:167–223

    Article  CAS  Google Scholar 

  16. Mitra S, Kaina B (1993) Prog Nucl Acid Res Mol Biol 44:109–142

    Article  CAS  Google Scholar 

  17. Rydberg B, Lindahl T (1982) EMBO J 1:211–216

    CAS  Google Scholar 

  18. Beranek DT (1990) Mutat Res 231:11–30

    CAS  Google Scholar 

  19. Kyrtopoulos SA, Anderson LM, Chhabra SK (1997) Cancer Detect Prev 21:391–405

    CAS  Google Scholar 

  20. Tubbs JL, Pegg AE, Tainer JA (2007) DNA Repair 6:1100–1115

    Article  CAS  Google Scholar 

  21. Gerson SL, Liu L, Phillips WP, Zaidi NH, Heist A, Markowitz S, Wilson JKV (1994) Proc Am Assn Cancer Res 35:699–700

    Google Scholar 

  22. Dolan ME (1997) Adv Drug Delivery Reviews 26:105–118

    Article  Google Scholar 

  23. Dolan ME, Pegg AE (1997) Clin Cancer Res 3:837–847

    CAS  Google Scholar 

  24. Rutledge LR, Durst HF, Wetmore SD (2008) Phys Chem Chem Phys 10:2801–2812

    Article  CAS  Google Scholar 

  25. Rutledge LR, Wetmore SD (2008) J Chem Theory Comput 4:1768–1780

    Article  CAS  Google Scholar 

  26. Rutledge LR, Campbell-Verduyn LS, Wetmore SD (2007) Chem Phys Lett 444:167–175

    Article  CAS  Google Scholar 

  27. Pegg AE, Fang Q, Loktionova NA (2007) DNA Repair 6:1071–1078

    Article  CAS  Google Scholar 

  28. Tubbs JL, Pegg AE, Tainer JA (2007) DNA Repair 6:1071–1078

    Article  Google Scholar 

  29. Gerson SL (2002) J Clin Oncol 20:2388–2399

    Article  CAS  Google Scholar 

  30. Fang Q, Gerson SL (2006) Clin Cancer Res 12:308–316

    Google Scholar 

  31. Pegg AE, Dolan ME, Moschel RC (1995) Prog Nucl Acid Res Mol Biol 51:167–223

    Article  CAS  Google Scholar 

  32. Mishra SK, Mishra PC (2002) J Comput Chem 23:530–540

    Article  CAS  Google Scholar 

  33. Kumar A, Mishra PC, Suhai S (2006) J Phys Chem A 110:7719–7727

    Article  CAS  Google Scholar 

  34. Daniels DS, Woo TT, Luu KX, Noll DM, Clarke ND, Pegg AE, Tainer JA (2004) Nat Struct Mol Biol 11:714–720

    Article  CAS  Google Scholar 

  35. Georgieva P, Himo F (2008) Chem Phys Lett 463:214–218

    Article  CAS  Google Scholar 

  36. Goodtzova K, Kanugula S, Edara S, Pegg AE (1998) Biochem 37:12489–12495

    Article  CAS  Google Scholar 

  37. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  38. Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789

    Article  Google Scholar 

  39. Hariharan PC, Pople JA (1972) Chem Phys Lett 66:217–219

    Article  Google Scholar 

  40. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  41. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275–280

    Article  CAS  Google Scholar 

  42. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  43. Cances MT, Mennucci B, Tomasi J (1997) Chem Phys 107:3032–3036

    CAS  Google Scholar 

  44. Cossi M, Barone V, Mennucci B, Tomasi J (1998) J Chem Phys Lett 286:253–263

    Article  CAS  Google Scholar 

  45. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158

    Article  CAS  Google Scholar 

  46. Tomasi J, Mennucci B, Cances EJ (1999) Mol Struct (Theochem) 464:211–226

    Article  CAS  Google Scholar 

  47. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–373

    Article  CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammy R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Rega N, Salvodar P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2001) Gaussian 98, Rev A.11.2. Gaussian Inc, Pittsburgh PA

  49. Frisch AE, Dennington RD, Keith TA, Neilsen AB, Holder AJ (2003) GaussView, Rev 3.9. Gaussian Inc, Pittsburg PA

  50. Parthasarathy R, Fridey SM (1986) Carcinogenesis 7:221–227

    Article  CAS  Google Scholar 

  51. Pedersen LG, Darden TA, Deerfield DW II, Anderson MW, Hoel DG (1988) Carcinogenesis 9:1553–1562

    Article  CAS  Google Scholar 

  52. Zhang M, Huang Z, Lin Z (2005) J Chem Phys 122:134313

    Article  Google Scholar 

  53. Shukla PK, Mishra PC (in press)

Download references

Acknowledgments

The authors are thankful to the Council of Scientific and Industrial Research (New Delhi) and the University Grants Commission (New Delhi) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phool Chand Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, S., Chand Mishra, P. A quantum chemical study of repair of O6-methylguanine to guanine by tyrosine: Evaluation of the winged helix-turn-helix model. J Mol Model 15, 1407–1415 (2009). https://doi.org/10.1007/s00894-009-0499-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0499-9

Keywords

Navigation