Skip to main content
Log in

Docking and molecular dynamics simulation of quinone compounds with trypanocidal activity

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR.

Docking and molecular dynamics simulation of genuine compounds with trypanocidal activity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abraham DJ (2003) Burger's Medicinal Chemistry and Drug Discovery. p 1045

  2. Sperandeo NR, Brun R (2003) Chembiochem 4:69–72

    Article  CAS  Google Scholar 

  3. Menezes IRA, Lopes JCD, Montanari CA, Oliva G, Pavao F, Castilho MS, Vieira PC, Pupo MT (2003) J Comp-Aid Mol Des 17:277–290

    Article  CAS  Google Scholar 

  4. Maya JD, Cassels BK, Vásques PI, Ferreira J, Faundez M, Galantini N, Ferreira A, Morello A (2007) Comp Biochem Physio Part A 146:601

    Article  Google Scholar 

  5. Croft SL, Barret MP, Urbina JA (2005) Trends Parasitol 21:508

    Article  CAS  Google Scholar 

  6. Dixon MJ, Maurer RI, Biggi C, Oyarzabal J, Essex JW, Bradley M (2005) Bioorg Med Chem 13:4513–4526

    Article  CAS  Google Scholar 

  7. Mansour TE (2002) Chemotherapeutic targes in parasites: Comtemporary strategies. New York, Cambridge University Press, p 90

    Google Scholar 

  8. De Luca S, Ulhaq S, Dixon MJ, Essex J, Bradley M (2003) Tetrahedron Letters 44:3195–3197

    Article  Google Scholar 

  9. del Corral JMM, Castro MA, Oliveira AB, Gualberto SA, Cuevas C, San Feliciano A (2006) Bioorg Med Chem 14:7231–7240

    Article  Google Scholar 

  10. Cenas NK, Arscott D, Williams CH, Blanchard JS (1994) Biochemistry 33:2509–2515

    Article  CAS  Google Scholar 

  11. Salmon-Chemin L, Buisine E, Yardley V, Kohler S, Debreu MA, Landry V, Sergheraert C, Croft SL, Krauth-Siegel RL, Davioud-Charvet E (2001) J Med Chem 44:548–565

    Article  CAS  Google Scholar 

  12. Bonse S, Santelli-Rouvier C, Barbe J, Krauth-Siegel RL (1999) J Med Chem 42:5448–5454

    Article  CAS  Google Scholar 

  13. Goulart MOF, Zani CL, Tonholo J, Freitas LR, de Abreu FC, Oliveira AB, Raslan DS, Starling S, Chiari E (1997) Bioorg Med Chem Lett 7:2043

    Article  CAS  Google Scholar 

  14. Zani CL, Chiari E, Krettli AU, Murta SMF, Cunningham ML, Fairlamb AH, Romanha AJ (1997) Bioorg Med Chem 5:2185–2192

    Article  CAS  Google Scholar 

  15. Zani CL, Fairlamb AH (2003) Mem Inst Oswaldo Cruz 98:565–568

    Article  CAS  Google Scholar 

  16. Alvarez J, Shoichet B (2005) Virtual Screening in Drug Discovery; p1–470

  17. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comp Chem 19:1639–1662

    Article  CAS  Google Scholar 

  18. Rarey M, Kramer B, Lengauer T, Klebe G (1996) J Mol Biol 261:470–489

    Article  CAS  Google Scholar 

  19. Moitessier N, Henry C, Maigret B, Chapleur Y (2004) J Med Chem 47:4178–4187

    Article  CAS  Google Scholar 

  20. Rarey M, Kramer B, Lengauer T, Klebe G (1996) J Mol Biol 261:470–489

    Article  CAS  Google Scholar 

  21. Bond CH, Zhang Y, Berriman M, Cunningham ML, Fairlamb AH, Hunter WN (1999) Structure 7:81–89

    Article  CAS  Google Scholar 

  22. Bauer H, Fritz-Wolf K, Winzer A, Kühner S, Little S, Yardley V, Vezin H, Palfey B, Schirmer RH, Davioud-Charvet ED (2006) J Am Chem Soc 128:10784–10794

    Article  CAS  Google Scholar 

  23. Gasteiger J, Marsili M (1981) Org Magn Reson 15:353–360

    Article  CAS  Google Scholar 

  24. Sanner MF (1999) J Mol Graphics Mod 17:57–61

    CAS  Google Scholar 

  25. Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) J Comput Chem 7:230–252

    Article  CAS  Google Scholar 

  26. Goodsell DS, Morris GM, Olson AJ (1996) J Mol Recognit 9:1–5

    Article  CAS  Google Scholar 

  27. Mohamadi FN, Richards GJ, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (1990) J Comput Chem 11:440–467

    Article  CAS  Google Scholar 

  28. Gouet P, Courcelle E, Stuart DI, Metoz F (1999) Bioinformatics 15:305–308

    Article  CAS  Google Scholar 

  29. http://www.ebi.ac.uk/emboos/align/index.html. Accessed: 01/October/2007

  30. Khan MOF, Austin SE, Chan C, Yin H, Marks D, Vaghjiani SN, Kendrick H, Yardley V, Croft SL, Douglas KT (2000) J Med Chem 43:3148–3156

    Article  CAS  Google Scholar 

  31. Parveen S, Khan MOF, Austin SE, Croft SL, Yardley V, Rock P, Douglas KT (2005) J Med Chem 48:8087–8097

    Article  CAS  Google Scholar 

  32. Chan C, Yin H, Garforth J, Mckie JH, Jaouhari R, Speers P, Douglas KT, Rock PJ, Yardley V, Croft SL, Fairlamb AH (1998) J Med Chem 41:148–156

    Article  CAS  Google Scholar 

  33. Couture JF, Hauk G, Thompson MJ, Blackburn GM, Trievel RC (2006) J Biolog Chem 281:19280–19287

    Article  CAS  Google Scholar 

  34. Freitas RF, Galembeck SE (2006) J Phys Chem B 110:21287–21298

    Article  CAS  Google Scholar 

  35. Molfetta FA, Bruni AT, Honorio KM, da Silva ABF (2005) Europ J Med Chem 40:329–338

    Article  CAS  Google Scholar 

  36. Molfetta FA, Angelotti WFD, Romero RAF, Montanari CA, da Silva ABF (2008) J Mol Mod 14:975–986

    Article  Google Scholar 

  37. Vega-Teijido M, Caracelli I, Zukerman-Schpector J (2006) J Mol Graphics Modell 24:349–355

    Article  CAS  Google Scholar 

  38. Wallace AC, Laskowski RA, Thornton J (1995) Protein Eng 8:127–134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge to Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq and Fundação de Amparo à Pesquisa do Estado de São Paulo - Fapesp (Brazilian Granting Agencies) for the financial support and all provided scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alberto Montanari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Molfetta, F.A., de Freitas, R.F., da Silva, A.B.F. et al. Docking and molecular dynamics simulation of quinone compounds with trypanocidal activity. J Mol Model 15, 1175–1184 (2009). https://doi.org/10.1007/s00894-009-0468-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0468-3

Keywords

Navigation