Skip to main content

Advertisement

Log in

Insights into the functional role of protonation states in the HIV-1 protease-BEA369 complex: molecular dynamics simulations and free energy calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method combined with molecular dynamics (MD) simulations were used to investigate the functional role of protonation in human immunodeficiency virus type 1 (HIV-1) protease complexed with the inhibitor BEA369. Our results demonstrate that protonation of two aspartic acids (Asp25/Asp25′) has a strong influence on the dynamics behavior of the complex, the binding free energy of BEA369, and inhibitor–residue interactions. Relative binding free energies calculated using the MM-PBSA method show that protonation of Asp25 results in the strongest binding of BEA369 to HIV-1 protease. Inhibitor–residue interactions computed by the theory of free energy decomposition also indicate that protonation of Asp25 has the most favorable effect on binding of BEA369. In addition, hydrogen-bond analysis based on the trajectories of the MD simulations shows that protonation of Asp25 strongly influences the water-mediated link of a conserved water molecule, Wat301. We expect that the results of this study will contribute significantly to binding calculations for BEA369, and to the design of high affinity inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–d
Fig. 3a–d
Fig. 4
Fig. 5
Fig. 6
Fig. 7a–d

Similar content being viewed by others

References

  1. Nam KY, Chang BH, Han CK, Ahn SK, No KT (2003) Bull Korean Chem Soc 6:817–823

    Google Scholar 

  2. Kohl NE, Emini EA, Schleif WA, Davis LI, Heimbach JC, Dixon RA, Scolnick EM, Sigal IS (1988) Proc Natl Acad Sci USA 85:4686–4690

    Article  CAS  Google Scholar 

  3. Wlodawer A, Vondrasek J (1998) Annu Rev Biomol Struct 27:249–284

    Article  CAS  Google Scholar 

  4. Smith R, Brereton IM, Chai RY, Kent SBH (1996) Nat Struct Biol 3:946–950

    Article  CAS  Google Scholar 

  5. Chen X, Tropsha A (1995) J Med Chem 38:42–48

    Article  CAS  Google Scholar 

  6. Wittayanarakul K, Aruksakunwong O, Saen-oon S, Chantratita W, Parasuk V, Sompornpisut P, Hannongbua S (2005) Biophys J 88:867–879

    Article  CAS  Google Scholar 

  7. Yamazaki T, Nicholson LK, Torchia DA, Wingfield P, Stahl SJ, Kaufman JD, Eyermann CJ, Hodge CN, Lam PYS, Ru Y (1994) Am Chem Soc 116:10791–10792

    Article  CAS  Google Scholar 

  8. Wang W, Kollman PA (2000) J Mol Biol 303:567–582

    Article  CAS  Google Scholar 

  9. Andersson HO, Fridborg K, Lowgren S, Alterman M, Muhlman A, Bjorsne M, Garg N, Kvarnstrom I, Schaal W, Classon B, Karlen A, Danielsson UH, Ahlsen G, Nillroth U, Vrang L, Oberg B, Hallberg B, Samuelsson A, Unge T (2003) Eur J Biochem 270:1746–1758

    Article  CAS  Google Scholar 

  10. Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9 University California, San Francisco

  11. Cieplak P, Cornell WD, Bayly C, Kollman PA (1995) J Comput Chem 16:1357–1377

    Article  CAS  Google Scholar 

  12. Ryckaert JP, Ciccotti G, Berendsen JC (1977) J Chem Phys 23:327–341

    Article  CAS  Google Scholar 

  13. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  14. Li T, Matheus M, Herdewijn P (2008) J Mol Graphics Model 26:813–823

    Article  CAS  Google Scholar 

  15. Hou T, Yu R (2007) J Med Chem 50:1177–1188

    Article  CAS  Google Scholar 

  16. Xu Y, Wang R (2006) Proteins 64:1058–1068

    Google Scholar 

  17. Kuhn B, Gerber P, Schulz-Gasch T, Stahl M (2005) J Med Chem 48:4040–4048

    Article  CAS  Google Scholar 

  18. Zhuang S, Zou J, Jiang Y, Mao X, Zhang B, Liu L, Yu Q (2005) J Med Chem 48:7208–7214

    Article  CAS  Google Scholar 

  19. Wang J, Morin P, Wang W, Kollman PA (2001) J Am Chem Soc 123:5221–5230

    Article  CAS  Google Scholar 

  20. Fogolari F, Brigo A, Molinari H (2003) Biophys J 85:159–166

    Article  CAS  Google Scholar 

  21. Reyes CM, Kollman PA (2000) J Mol Biol 297:1145–1158

    Article  CAS  Google Scholar 

  22. Sanner MF, Olson AJ, Spehner J (1996) Biopolymers 38:305–320

    Article  CAS  Google Scholar 

  23. McQuarrie DA (1976) Statistical mechanics. Harper and Row, New York

  24. Gohlke H, Kiel C, Case DA (2003) J Mol Biol 330:891–913

    Article  CAS  Google Scholar 

  25. Yang R, Lee MC, Yan H, Duan Y (2005) Biophys J 89:95–106

    Article  CAS  Google Scholar 

  26. Piana S, Carloni P, Rothlisberger U (2002) Protein Sci 11:2393–2402

    Article  CAS  Google Scholar 

  27. Zoete V, Michielin O, Karplus M (2002) J Mol Biol 315:21–52

    Article  CAS  Google Scholar 

  28. Lam PYS, Jahdav PK, Eyermann CJ, Hodge CN, Ru Y, Meek LT, Bacheler JL, Otto MJ, Rayner MM, Wong YN, Chang CH, Weber PC, Jackson DA, Sharpe TR, Erickson-Viitanen S (1994) Science 263:380–384

    Article  CAS  Google Scholar 

  29. Lam PYS, Ru Y, Jahdav PK, Aldrich PE, DeLucca GV, Eyermann CJ, Chang CH, Emmett G, Holler ER, Daneker WF, Li L, Confalone PN, McHugh RJ, Han Q, Li R, Markwalder JA, Seitz SP, Sharpe TR, Bacheler LT, Rayner MM, Klabe RM, Shum L, Winslow DL, Korhauser DM, Jackson DA, Erickson-Viitanen S, Hodge CN (1996) J Med Chem 39:3514–3525

    Article  CAS  Google Scholar 

  30. Hodge CN, Aldrich PE, Bacheler LT, Chang CH, Eyermann CJ, Garber S, Grubb M, Jackson DA, Jadhav PK, Korant B, Lam PY, Maurin MB, Meek JL, Otto MJ, Otto MM, Reid C, Sharpe TR, Shum L, Winslow DL, Erickson-Viitanen S (1996) Chem Biol 3:301–314

    Article  CAS  Google Scholar 

  31. Lu Y, Yang CY, Wang S (2006) J Am Chem Soc 128:11830–11839

    Article  CAS  Google Scholar 

  32. Davies MN, Toseland CP, Moss DM, Flower DR (2006) BMC Biochem 7:18 doi:10.1186/1471-2091-7-18

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (Grant Nos. 10874104, 10474060 and 10504017), the key Project of Chinese Ministry of Education (NO.206093) and the key Project of Nature Science Foundation of Shandong Province (Z2007A05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinggang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Yang, M., Hu, G. et al. Insights into the functional role of protonation states in the HIV-1 protease-BEA369 complex: molecular dynamics simulations and free energy calculations. J Mol Model 15, 1245–1252 (2009). https://doi.org/10.1007/s00894-009-0452-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0452-y

Keywords

Navigation