Skip to main content
Log in

Modeling the noncovalent interactions at the metabolite binding site in purine riboswitches

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We present gas phase quantum chemical studies on the metabolite binding interactions in two important purine riboswitches, the adenine and guanine riboswitches, at the B3LYP/6-31G(d,p) level of theory. In order to gain insights into the strucutral basis of their discriminative abilities of regulating gene expression, the structural properties and binding energies for the gas phase optimized geometries of the metabolite bound binding pocket are analyzed and compared with their respective crystal geometries. Kitaura-Morokuma analysis has been carried out to calculate and decompose the interaction energy into various components. NBO and AIM analysis has been carried out to understand the strength and nature of binding of the individual aptamer bases with their respective purine metabolites. The Y74 base, U in case of adenine riboswitch and C in case of guanine riboswitch constitutes the only differentiating element between the two binding pockets. As expected, with W:W cis G:C74 interaction contributing more than 50% of the total binding energy, the interaction energy for metabolite binding as calculated for guanine (-46.43 Kcal/mol) is nearly double compared to the corresponding value for that of adenine (-24.73 Kcal/mol) in the crystal context. Variations in the optimized geometries for different models and comparison of relative contribution to metabolite binding involving four conserved bases reveal the possible role of U47:U51 W:H trans pair in the conformational transition of the riboswitch from the metabolite free to metabolite bound state. Our results are also indicative of significant contributions from stacking and magnesium ion interactions toward cooperativity effects in metabolite recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gilbert SD, Stoddard CD, Wise SJ, Batey RT (2006) J Mol Biol 359:754–768

    Article  CAS  Google Scholar 

  2. Nudler E, Mironov AS (2004) Trends Biochem Sci 29:11–17

    Article  CAS  Google Scholar 

  3. Mandal M, Breaker RR (2004) Nat Rev Mol Cell Biol 5:451–463

    Article  CAS  Google Scholar 

  4. Winkler W, Nahvi A, Breaker RR (2002) Nature 419:952–956

    Article  CAS  Google Scholar 

  5. Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR (2003) Cell 113:577–586

    Article  CAS  Google Scholar 

  6. Mandal M, Breaker RR (2004) Nat Struct Mol Biol 11:29–35

    Article  CAS  Google Scholar 

  7. Grundy FJ, Lehman SC, Henkin TM (2003) Proc Natl Acad Sci USA 100:12057–12062

    Article  CAS  Google Scholar 

  8. Sudarsan N, Wickiser JK, Nakamura S, Ebert MS, Breaker RR (2003) Genes Dev 17:2688–2697

    Article  CAS  Google Scholar 

  9. Mandal M, Lee M, Barrick JE, Weinberg Z, Emilsson GM, Ruzzo WL (1992) Ann Rev Phys Chem 43:257–282

    Article  Google Scholar 

  10. Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR (2002) Chem Biol 9:1043–1049

    Article  CAS  Google Scholar 

  11. Mironov A, Gusarov I, Rafikov R, Lopez LE, Shatalin K, Kreneva RA, Perumov DA, Nudler E (2002) Cell 111:747–756

    Article  CAS  Google Scholar 

  12. Winkler W, Cohen-Chalamish S, Breaker RR (2002) Proc Natl Acad Sci USA 99:15908–15913

    Article  CAS  Google Scholar 

  13. Winkler W, Nahvi A, Breaker RR (2002) Nature 419:952–956

    Article  CAS  Google Scholar 

  14. McDaniel BAM, Grundy FJ, Artsimovitch I, Henkin TM (2003) Nat Struct Biol 10:701–707

    Article  CAS  Google Scholar 

  15. Epshtein V, Mironov AS, Nudler E (2003) Proc Natl Acad Sci USA 100:3083–3088

    Article  CAS  Google Scholar 

  16. Winkler W, Nahvi A, Sudarsan N, Barrick JE, Breaker RR (2003) Nat Struct Biol 10:701–707

    Article  CAS  Google Scholar 

  17. Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I (2004) Proc Natl Acad Sci USA 101:6421–6426

    Article  CAS  Google Scholar 

  18. Sudarsan N, Hammond MC, Block KL, Welz R, Barrick JE, Roth A, Breaker RR (2006) Science 314:300–304

    Article  CAS  Google Scholar 

  19. Lea CR, Piccirilli JA (2007) Nat Chem Biol 3:16–17

    Article  CAS  Google Scholar 

  20. Batey RT, Gilbert SD, Montage RK (2004) Nature 432:411–415

    Article  CAS  Google Scholar 

  21. Ebbole DJ, Zalkin H (1987) J Biol Chem 262:8274–8287

    CAS  Google Scholar 

  22. Serganov A, Yuan Y, Pikovskaya O, Polonskaia A, Malinina I, Phan AT, Hobartner C, Micura R, Breaker RR, Patel DJ (2004) Chem Biol 11:1729–1741

    Article  CAS  Google Scholar 

  23. Mulhbacher J, Lafontaine DA (2007) Nucleic Acids Res 35:5568–5580

    Article  CAS  Google Scholar 

  24. Lemay J-F, Lafontaine DA (2007) RNA 13:39–350

    Article  CAS  Google Scholar 

  25. Ottink OM, Rampersad SM, Tssari M, Zaman GJR, Heus HA, Wijmenga SS (2007) RNA 13:2202–2212

    Article  CAS  Google Scholar 

  26. manuscript under preparation

  27. Gilbert SD, Mediatore SJ, Batey RT (2006) J Am Chem Soc 128:14214–14215

    Article  CAS  Google Scholar 

  28. Gilbert SD, Love CE, Edwards AL, Batey RT (2007) Biochemistry 46:13297–13309

    Article  CAS  Google Scholar 

  29. The Leontis and Westhof nomenclature for nucleic acids base pairing is employed using the following format: Base1:Base2 (A/U/G/C) Edge1:Edge2 (W/H/S) Glycosidic bond orienta- tion (Cis/Trans) where A, U, G, C, W, H and S stand for adenine, uracil, guanine, cytosine, Watson-Crick edge, Hoogsteen edge and sugar edge respectively. See Ref. [30] for details

  30. Leontis NB, Westhof E (2001) RNA 7:499–512

    Article  CAS  Google Scholar 

  31. Batey RT, Gilbert SD Chem Biol 13:805–807

  32. Lemay J-F, Penedo JC, Tremblay R, Lilley DMJ, Lafontaine DA (2006) Chem Biol 13:857–868

    Article  CAS  Google Scholar 

  33. Šponer J, Hobza P (2003) Collect Czech Chem Comm 68:2231–2282

    Article  CAS  Google Scholar 

  34. Bhattacharyya D, Koripella SC, Mitra A, Rajendran VB, Sinha B (2007) J Biosci 32:809–825

    Article  CAS  Google Scholar 

  35. Sharma P, Mitra A, Sharma S, Singh H (2007) J Chem Sci 119:525–531

    Article  CAS  Google Scholar 

  36. Sharma P, Mitra A, Sharma S, Singh H, Bhattacharyya D (2008) J Biomol Struct Dyn 25:709–732

    CAS  Google Scholar 

  37. Sharma P, Singh H, Mitra A (2008) Lec Notes in Comp Sci 5102:379–386

    Article  Google Scholar 

  38. Šponer JE, Spackova N, Leszczynski J, Šponer J (2005) J Phys Chem B 109:11399–11410

    Article  CAS  Google Scholar 

  39. Šponer JE, Spackova N, Kulhanek P, Leszczynski J, Šponer J (2005) J Phys Chem A 109:2292–2301

    Article  CAS  Google Scholar 

  40. Šponer JE, Spackova N, Sychrovsky’, Leszczynski J, Šponer J (2005) J Phys Chem B 109:18680–18689

    Article  CAS  Google Scholar 

  41. Roy A, Panigrahi S, Bhattacharyya M, Bhattacharyya D (2008) J Phys Chem B 112:3786–3796

    Article  CAS  Google Scholar 

  42. Šponer J, Jureˇcka, Hobza P (2004) J Am Chem Soc 126:10142–10151

    Article  CAS  Google Scholar 

  43. Černý J, Hobza P (2007) Phys Chem Chem Phys 9:5291–5302

    Google Scholar 

  44. Kristyan S, Puly P (1994) Chem Phys Lett 229:175–180

    Article  CAS  Google Scholar 

  45. Hobza P, Šponer J, Reschel T (1995) J Comput Chem 16:1315–1325

    Article  CAS  Google Scholar 

  46. Hesselmann A, Jansen G, Schutz M (2005) J Chem Phys 122:014103

    Article  CAS  Google Scholar 

  47. Misquitta AJ, Jeziorski B, Szalewicz K (2003) Phys Rev Lett 91:033201

    Article  CAS  Google Scholar 

  48. Kohn W, Meir Y, Makarov DE (1998) Phys Rev Lett 80:4153–4156

    Article  CAS  Google Scholar 

  49. Dion M, Rydberg H, Schroder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  50. Grimme S (2006) J Chem Phys 124:034108

    Article  CAS  Google Scholar 

  51. Antony J, Grimme S (2006) Phys Chem Chem Phys 8:5287–5293

    Article  CAS  Google Scholar 

  52. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  53. Grimme S (2004) J Comput Chem 25:1463–1473

    Article  CAS  Google Scholar 

  54. Morgado C, Vincent MA, Hillier IH, Shan X (2007) Phys Chem Chem Phys 9:448–451

    Article  CAS  Google Scholar 

  55. Frisch MJ et al (2003) Gaussian03 revison B.05 Gaussian Inc Pittsburgh PA

  56. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen J, Koseky S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupius M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  57. Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325–331

    Article  CAS  Google Scholar 

  58. Wang J, Gu J, Leszczynski (2005) J Phys Chem B 109:13761–13769

    Article  CAS  Google Scholar 

  59. Wang J, Gu J, Leszczynski (2006) J Biomol Struct Dyn 24:139–148

    Google Scholar 

  60. Reed AE, Schleyer PvR (1987) J Am Chem Soc 109:7362–7373

    Article  CAS  Google Scholar 

  61. Bader RFW (1990) Atoms in molecules. A quantum theory. The Clarendon Press, Oxford

    Google Scholar 

  62. Grimme S, Antony J, Schwabe T, Lichtenfeld CM (2007) 0rg Biomol Chem 5:741–758

    Article  CAS  Google Scholar 

  63. Kolandaivel P, Nirmala V (2004) J Mol Struct 694:33–38

    Article  CAS  Google Scholar 

  64. William S, Dudley H, Stephens E, O’Brien DP, Min Z (2004) Angew Chem 43:6596–6616

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AM wishes to thank Department of Biotechnology (DBT), Government of India for research grant (NO. BT/PR5451/BID/07/111/2004. PS and SS thank the CSIR, New Delhi for research fellowships. Travel grants from DBT (for PS) and DST (for SS) for attending MDMM-2008, Piechwice, Poland are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, P., Sharma, S., Chawla, M. et al. Modeling the noncovalent interactions at the metabolite binding site in purine riboswitches. J Mol Model 15, 633–649 (2009). https://doi.org/10.1007/s00894-008-0384-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0384-y

Keywords

Navigation