Skip to main content
Log in

Theoretical studies on the tautomerism and intramolecular hydrogen shifts of 5-Amino-tetrazole in the gas phase

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The tautomerism and intramolecular hydrogen shifts of 5-amino-tetrazole in the gas phase were studied in the present work. The minimum energy path (MEP) information of 5-amino-tetrazole was obtained at the CCSD(T)/6–311G**//MP2/6–311G** level of theory. The six possible tautomers of 1H, 4H-5-imino-tetrazole (a), 1H-5-amino-tetrazole (b), 2H-5-amino-tetrazole (c), 1H, 2H-5-imino-tetrazole (d), the mesoionic form (e) and 2H, 4H-5-imino-tetrazole (f) were investigated. Among these tautomers, there are 2 amino- forms, 3 imino- forms, and 1 mesoionic structure form. In all the tautomers, 2-H form (c) is the energetically preferred one in the gas phase. In the imino- tautomers, the energy value of the compound d is similar as that of the compound f but it is higher than the energy value of the compound a. The potential energetic surface (PES) and kinetics for five reactions have been investigated. Reaction 2 (bc) was hydrogen shifts only in which the 1-H and 2-H rearrangement. This means that the reaction 2 (bc) is energetically favorable having an activation barrier of 45.66 kcal·mol−1 and the reaction energies (ΔE) is only 2.67 kcal·mol−1. However, the reaction energy barrier for tautomerism of reaction 1 (be) is 54.90 kcal·mol−1. Reaction 1 (ba), reaction 3 (cd), and reaction 5 (cf) were amino- →imino- tautomerism reactions. The energy barriers of amino- →imino- tautomerism reactions required are 59.39, 65.57, 73.61 kcal·mol−1 respectively in the gas phase. The calculated values of rate constants using TST, TST/Eckart, CVT, CVT/SCT and CVT/ZCT methods using the optimized geometries obtained at the MP2/6–311G** level of theory show the variational effects are small over the whole temperature range, while tunneling effects are big in the lower temperature range for all tautomerism reactions.

Graphical Abstract Figure (DOC 45.0 KB)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sivabalan R, Anniyappan M, Pawar SJ, Talawar MB, Gore GM, Venugopalan S et al (2006) J Hazard Mater A137:672–680 doi:10.1016/j.jhazmat.2006.03.038

    Article  Google Scholar 

  2. Katritzky AR, Rogovoy BV, Kovalenko KV (2003) J Org Chem 68:4941–4943 doi:10.1021/jo0266543

    Article  CAS  Google Scholar 

  3. Jime’nez V, Alderete JB (2006) J Mol Struct 775:1–7

    CAS  Google Scholar 

  4. Chen ZX, Xiao HM, Chin YN (1999) J Phys Chem A 103:8062–8066 doi:10.1021/jp9903209

    Article  CAS  Google Scholar 

  5. Levchik SV, Ivashkevich OA, Balabanovich AI (1992) Thermochim Acta 207:115–130 doi:10.1016/0040-6031(92)80129-K

    Article  CAS  Google Scholar 

  6. Jonassen HR, Pankert T, Henry RA (1967) Appl Spectrosc 21:89–91 doi:10.1366/000370267774385308

    Article  CAS  Google Scholar 

  7. Nelson JH, Baglin FG (1972) Spectrosc Lett 5:101–105 doi:10.1080/00387017208064693

    Article  CAS  Google Scholar 

  8. Murphy DB, Picard JP (1954) J Org Chem 19:1801–1817

    Google Scholar 

  9. Koz’min’ski W, Stefaniak L, Wiench JW (1995) Polish J Chem 69:74–79

    CAS  Google Scholar 

  10. Bocia W, Jaz’winsky J, Koz’minsky W, Stefaniak GA (1994) Webb J Chem Soc Perkin Trans 2:1327–1331 doi:10.1039/p29940001327

    Article  Google Scholar 

  11. Barmin MI, Gromova SI, Kasatikova EL, Karaulova IB, V. MV (1992) Zhum Org Khim 28:1767–1771

    Google Scholar 

  12. Vander Putten N, Haeijdenrijk D, Schenk H (1974) Cryst Struct Commun :321–322

  13. Palmer MH, Beveridge A (1987) J Chem Phys 111:249–255 doi:10.1016/0301-0104(87)80138-6

    Article  CAS  Google Scholar 

  14. Ming WW, Regis LT, Curt W (1993) J Am Chem Soc 115:2465–2472 doi:10.1021/ja00059a048

    Article  Google Scholar 

  15. Chen ZX, Xiao HM, Yang SL (1999) Chem Phys 250:243–248 doi:10.1016/S0301-0104(99)00336-5

    Article  Google Scholar 

  16. Chen ZX, Xiao HM, Song WY (1999) J Mol Struct THEOCHEM 460:167–173 doi:10.1016/S0166-1280(98)00316-9

    Article  CAS  Google Scholar 

  17. Chen ZX, Fan JF, Xiao HM (1999) J Mol Struct THEOCHEM 458:249–256 doi:10.1016/S0166-1280(98)00249-8

    Article  CAS  Google Scholar 

  18. Chen ZX, Xiao HM (2000) Int J Quantum Chem 79:350–357 doi:10.1002/1097-461X(2000)79:6<350::AID-QUA3>3.0.CO;2-T

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR (2003) GAUSSIAN 03, Revision A.1. Gaussian, Inc, Pittsburgh, PA

    Google Scholar 

  20. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:281–289 doi:10.1016/0009-2614(90)80030-H

    Article  CAS  Google Scholar 

  21. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–509 doi:10.1016/0009-2614(88)85250-3

    Article  CAS  Google Scholar 

  22. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89:2193–2197 doi:10.1063/1.455064

    Article  CAS  Google Scholar 

  23. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–677 doi:10.1063/1.438955

    Article  CAS  Google Scholar 

  24. Curtiss LA, Raghavachari K, Redfern PC, Rassolv V, Pople JA (1998) J Chem Phys 109:7764–7776 doi:10.1063/1.477422

    Article  CAS  Google Scholar 

  25. Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910–1918 doi:10.1063/1.443164

    Article  CAS  Google Scholar 

  26. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161 doi:10.1063/1.456010

    Article  CAS  Google Scholar 

  27. Zhang SW, Truong TN (2001) VKLab version 1.0, University of Utah

  28. Chuang YY, Corchado JC, Fast PL, Will J, Hu WP, Liu YP et al. (1999) POLYRATE, Program vision 8.2, Minneapolis

  29. Truhlar DG, Isaacson AD, Garrett BC (1985) Theory of Chemical Reaction Dynamics, vol. 4. CRC Press, Boca Raton

    Google Scholar 

  30. Truong NT, Truhlar DG (1990) J Chem Phys 93:1761–1769 doi:10.1063/1.459103

    Article  CAS  Google Scholar 

  31. Miller WH (1979) J Am Chem Soc 101:6810–6814 doi:10.1021/ja00517a004

    Article  CAS  Google Scholar 

  32. Truhlar DG, Garrett BC (1984) Annu Rev Phys Chem 35:159–189 doi:10.1146/annurev.pc.35.100184.001111

    Article  CAS  Google Scholar 

  33. Truong NT (1994) J Chem Phys 100:8014–8025 doi:10.1063/1.466795

    Article  Google Scholar 

  34. Liu YP, Lynch GC, Troung TN, Lu DH, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:2408–2415 doi:10.1021/ja00059a041

    Article  CAS  Google Scholar 

  35. Truhlar DG, Isaacson AD, Garrett BC (1982) J Phys Chem 86:2252–2263 doi:10.1021/j100209a021

    Article  CAS  Google Scholar 

  36. Harmony MD, Laurie VW, Kuczkowski RL, Schwendeman RH, Ramsay UA, Lovas FL (1979) J. Phys. Chem. Ref. 8:679–721

    Google Scholar 

  37. Zhang LP, Tu YR Trans (1980) Foundation of Organ. Chem. (Theory and Application) Beijing: the Science Press

  38. Palmer MH, Beveridge A (1987) J Chem Phys 111:249–261 doi:10.1016/0301-0104(87)80138-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor D. G. Truhlar for providing the POLYRATE 8.2 program. The project was supported by the NSAF Foundation (No. 10776002) and the 111 project (B07012) in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Guo Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, JG., Feng, LN., Shu, YJ. et al. Theoretical studies on the tautomerism and intramolecular hydrogen shifts of 5-Amino-tetrazole in the gas phase. J Mol Model 15, 67–77 (2009). https://doi.org/10.1007/s00894-008-0374-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0374-0

Keywords

Navigation