Skip to main content
Log in

The electronic structure of the C2H4O···2HF tri-molecular heterocyclic hydrogen-bonded complex: a theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The geometries of three isomers of the C2H4O···2HF tri-molecular heterocyclic hydrogen-bonded complex were examined through B3LYP/aug-cc-pVDZ calculations. Analysis of structural parameters, determination of CHELPG (charge electrostatic potential grid) intermolecular charge transfer, interpretation of infrared stretching modes, and Bader’s atoms in molecules (AIM) theory calculations was carried out in order to characterize the hydrogen bonds in each isomer of the C2H4O···2HF complex. The most stable structure was determined through the identification of hydrogen bonds between C2H4O and HF, (O···H), as well as in the hydrofluoric acid dimer, (HFD–R···HFD). However, the existence of a tertiary interaction (Fλ···Hα) between the fluoride of the second hydrofluoric acid and the axial hydrogen atoms of C2H4O was decisive in the identification of the preferred configuration of the C2H4O···2HF system.

Geometries of three isomers of the C2H4O···2HF tri-molecular heterocyclic hydrogen-bonded complex

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Palmer DC (2004) The chemistry of heterocyclic compounds, vol 60. Wiley, New York

  2. Acheson RM (1976) An introduction to the chemistry of heterocyclic compounds. Wiley, New York

    Google Scholar 

  3. Gritter RJ (1967) The chemistry of the ether linkage. Interscience, New York

    Google Scholar 

  4. Lewars EG (1984) Comprehensive organic chemistry. Pergamon, New York

    Google Scholar 

  5. Legon AC (1995) Chem Phys Lett 247:24–31

    Article  CAS  Google Scholar 

  6. Legon AC, Kisiel Z, Georgiou AS, Millen DJ (1989) Chem Phys Lett 155:447–454

    Article  Google Scholar 

  7. Goodwin EJ, Millen DJ, Legon AC (1986) J Chem Phys 85:676–682

    Article  CAS  Google Scholar 

  8. Oliveira BG, Araújo RCMU, Carvalho AB, Ramos MN (2007) J Theor Comp Chem 6:647–660

    Article  Google Scholar 

  9. Oliveira BG, Santos ECS, Duarte EM, Araújo RCMU, Ramos MN, Carvalho AB (2004) Spectrochim Acta A 60:1883–1887

    Article  CAS  Google Scholar 

  10. Oliveira BG, Duarte EM, Araújo RCMU, Ramos MN, Carvalho AB (2005) Spectrochim Acta A 61:491–494

    Article  CAS  Google Scholar 

  11. Everaert GP, Herrebout WA, van der Veken BJ (2000) J Mol Struct 550:399–411

    Article  Google Scholar 

  12. Oliveira BG, Araújo RCMU, Pereira FS, Lima EF, Silva WLV, Carvalho AB, Ramos AB (2008) Quim Nova (in press)

  13. Jursic BS (1998) J Mol Struct (THEOCHEM) 434:37–42

    Article  CAS  Google Scholar 

  14. Panek J, Latajka A (2000) Chem Phys Lett 332:617–623

    Article  CAS  Google Scholar 

  15. DuPre DB, Yappert MC (2002) J Phys Chem A 106:567–574

    Article  CAS  Google Scholar 

  16. Rozas I, Alkorta I, Elguero J (1997) J Phys Chem A 101:9457–9463

    Article  CAS  Google Scholar 

  17. Bader RFW (1991) Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  18. Oliveira BG, Vanconcellos MLAA (2006) J Mol Struct (THEOCHEM) 774:83–88

    Article  CAS  Google Scholar 

  19. Oliveira BG, Araújo RCMU (2007) Quim Nova 30:791–796

    CAS  Google Scholar 

  20. Chirlian LE, Francl MM (1987) J Comp Chem 8:894–905

    Article  CAS  Google Scholar 

  21. Breneman CM, Wiberg KB (1990) J Comp Chem 11:361–373

    Article  CAS  Google Scholar 

  22. Frisch MJ et al (1998) Gaussian 98W (Revision A.1). Gaussian, Pittsburgh, PA

    Google Scholar 

  23. Bader RFW (1990) Atoms in molecules. A quantum theory, Clarendon, Oxford

    Google Scholar 

  24. AIM 2000 1.0 designed by Biegler-König, F; University of Applied Sciences, Bielefeld, Germany

  25. Pauling L (1945) The Nature of the chemical bond. Cornell University Press, New York

    Google Scholar 

  26. Koch U, Popelier PLA (1995) J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  27. van Duijneveldt FB, Murrell JN (1967) J Chem Phys 46:1759–1767

    Article  Google Scholar 

  28. Umeyama U, Morokuma K (1977) J Am Chem Soc 99:1316–1332

    Article  CAS  Google Scholar 

  29. Oliveira BG, Pereira FS, Araújo RCMU, Ramos MN (2006) Chem Phys Lett 427:181–195

    Article  CAS  Google Scholar 

  30. Kollman P, Allen LC (1972) Chem Rev 72:283–303

    Article  CAS  Google Scholar 

  31. Hobza P, Havlas Z (2000) Chem Rev 100:4253–4263

    Article  CAS  Google Scholar 

  32. Hernandes MZ, da Silva JBP, Longo RL (2002) J Braz Chem Soc 13:36–42

    Article  CAS  Google Scholar 

  33. Vasconcellos MLAA, Oliveira BG, Leite LFCC (2008) J Mol Struct (THEOCHEM) (in press)

  34. Oliveira BG, Araújo RCMU, Carvalho AB, Ramos MN, Hernandes MZ, Cavalcante KR (2007) J Mol Struct (THEOCHEM) 802:91–97

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the partial financial support from the Brazilian Funding agencies CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boaz G. de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, B.G., Araújo, R.C.M.U., Chagas, F.F. et al. The electronic structure of the C2H4O···2HF tri-molecular heterocyclic hydrogen-bonded complex: a theoretical study. J Mol Model 14, 949–955 (2008). https://doi.org/10.1007/s00894-008-0337-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0337-5

Keywords

Navigation