Skip to main content

Advertisement

Log in

Toward the virtual screening of Cdc25A phosphatase inhibitors with the homology modeled protein structure

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Cdc25 phosphatases have been considered as attractive drug targets for anticancer therapy due to the correlation of their overexpression with a wide variety of cancers. As a method for the discovery of novel inhibitors of Cdc25 phosphatases, we have evaluated the computer-aided drug design protocol involving the homology modeling of Cdc25A and virtual screening with the two docking tools: FlexX and the modified AutoDock program implementing the effects of ligand solvation in the scoring function. The homology modeling with the X-ray crystal structure of Cdc25B as a template provides a high-quality structure of Cdc25A that enables the structure-based inhibitor design. Of the two docking programs under consideration, AutoDock is found to be more accurate than FlexX in terms of scoring putative ligands. A detailed binding mode analysis of the known inhibitors shows that they can be stabilized in the active site of Cdc25A through the simultaneous establishment of the multiple hydrogen bonds and the hydrophobic interactions. The present study demonstrates the usefulness of the modified AutoDock program as a docking tool for virtual screening of new Cdc25 phosphatase inhibitors as well as for binding mode analysis to elucidate the activities of known inhibitors.

Structures and available IC50 values (in μM) of the twenty Cdc25 phosphatase inhibitors seeded in docking library

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kristjansdottir K, Rudolph J (2004) Chem Biol 11:1043–1051

    Article  CAS  Google Scholar 

  2. Rudolph J (2007) Biochemistry 46:3595–3604

    Article  CAS  Google Scholar 

  3. Galaktionov K, Lee AK, Eckstein J, Draetta G, Meckler J, Loda M, Beach D (1995) Science 269:1575–1577

    Article  CAS  Google Scholar 

  4. Hernandez S, Bessa X, Bea S, Hernandez L, Nadal A, Mallofre C, Muntane J, Castells A, Fernandez PL, Cardesa A, Campo E (2001) Lab Invest 81:465–473

    CAS  Google Scholar 

  5. Takemara I, Yamamoto H, Sekimoto M, Ohue M, Noura S, Miyake Y, Matsumoto T, Aihara T, Tomita N, Tamaki Y, Sakita I, Kikkawa N, Matsuura N, Shiozaki H, Monden M (2000) Cancer Res 60:3043–3050

    Google Scholar 

  6. Hernandez S, Hernandez L, Bea S, Pinyol M, Nayach I, Bellosillo B, Nadal A, Ferrer A, Fernandez PL, Montserrat E, Cardesa A, Cardes E, Campo E (2000) Int J Cancer 89:148–152

    Article  CAS  Google Scholar 

  7. Ngan ESW, Hashimoto Y, Ma X-Q, Tsai MJ, Tsai SY (2003) Oncogene 22:734–739

    Article  CAS  Google Scholar 

  8. Guo J, Kleeff J, Li J, Ding J, Hammer J, Zhao Y, Giese T, Korc M, Büchler M, Friess H (2004) Oncogene 23:71–81

    Article  CAS  Google Scholar 

  9. Wu WG, Fan YH, Kemp BL, Walsh G, Mao L (1998) Cancer Res 58:4082–4085

    CAS  Google Scholar 

  10. Sasaki H, Yukiue H, Kobayashi Y, Tanahashi M, Moriyama S, Nakashima Y, Fukai I, Kiriyama M, Yamakawa Y, Fujii Y (2001) Cancer Lett 173:187–192

    Article  CAS  Google Scholar 

  11. Fernandez-Vidal A, Ysebaert L, Didier C, Betous R, Toni FD, Prade-Houdellier N, Demur C, Contour-Galcera M-O, Prevost G, Ducommun B, Payrastre B, Racaud-Sultan C, Manenti S (2006) Cancer Res 66:7128–7135

    Article  CAS  Google Scholar 

  12. Nishikawa Y, Carr BI, Wang M, Kar S, Finn F, Dowd B, Zheng ZB, Kerns J, Naganathan S (1995) J Biol Chem 270:28304–28310

    Article  CAS  Google Scholar 

  13. Boutros R, Dozier C, Ducommun B (2006) Curr Opin Cell Biol 18:185–191

    Article  CAS  Google Scholar 

  14. Fauman EB, Cogswell JP, Lovejoy B, Rocque WJ, Holmes W, Montana VG, Piwnica-Worms H, Rink MJ, Saper MA (1996) Cell 93:617–625

    Article  Google Scholar 

  15. Reynolds RA, Yem AW, Wolfe CL, Deibel MR, Chidester CG, Watenpaugh KD (1999) J Mol Biol 293:559–568

    Article  CAS  Google Scholar 

  16. Contour-Galcera M-O, Sidhu A, Prevost G, Bigg D, Ducommun B (2007) Pharmcol Ther 115:1–12

    Article  CAS  Google Scholar 

  17. Ham SW, Carr BI (2004) Drug Des Rev 1:123–132

    CAS  Google Scholar 

  18. Prevost G, Brezak M-C, Goubin F, Mondesert O, Galcera M-O, Quaranta M, Alby F, Lavergne O, Ducommun B (2003) Prog Cell Cycle Res 5:225–234

    Google Scholar 

  19. Lazo JS, Aslan DC, Southwick EC, Cooley KA, Ducruet AP, Joo B, Vogt A, Wipf P (2001) J Med Chem 44:4042–4049

    Article  CAS  Google Scholar 

  20. Sohn J, Kiburz B, Li Z, Deng L, Safi A, Pirrung MC, Rudolph J (2003) J Med Chem 46:2580–2588

    Article  CAS  Google Scholar 

  21. Brault L, Denance M, Banaszak E, Maadidi SE, Battaglia E, Bagrel D, Samadi M (2007) Eur J Med Chem 42:243–247

    Article  CAS  Google Scholar 

  22. Huang W, Li J, Zhang W, Zhou Y, Xie C, Luo Y, Li Y, Wang J, Li J, Lu W (2006) Bioorg Med Chem Lett 16:1905–1908

    Article  CAS  Google Scholar 

  23. Brun M-P, Braud E, Angotti D, Mondesert O, Quaranta M, Montes M, Miteva M, Gresh N, Ducommun B, Garbay C (2005) Bioorg Med Chem 13:4871–4879

    Article  CAS  Google Scholar 

  24. Contour-Galcera M-O, Lavergne O, Brezak M-C, Ducommun B, Prevost G (2004) Bioorg Med Chem Lett 14:5809–5812

    Article  CAS  Google Scholar 

  25. Lazo JS, Nemoto K, Pestell KE, Cooley K, Southwick EC, Mitchell DA, Furey W, Gussio R, Zaharevitz DW, Joo B, Wipf P (2002) Mol Pharmacol 61:720–728

    Article  CAS  Google Scholar 

  26. Lavecchia A, Cosconati S, Limongelli V, Novellino E (2006) ChemMedChem 1:540–550

    Article  CAS  Google Scholar 

  27. Park H, Carr BI, Li M, Ham SW (2007) Bioorg Med Chem Lett 17:2351–2354

    Article  CAS  Google Scholar 

  28. Zou X, Sun Y, Kuntz ID (1999) J Am Chem Soc 121:8033–8043

    Article  CAS  Google Scholar 

  29. Shoichet BK, Leach AR, Kuntz ID (1999) Proteins 34:4–16

    Article  CAS  Google Scholar 

  30. Bairoch A, Apweiler R (1999) Nucl Acids Res 27:49–54

    Article  CAS  Google Scholar 

  31. Thompson JD, Higgins DG, Gibson TJ (1994) Nucl Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  32. Sali A, Blundell TL (1993) J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  33. Fiser A, Do RKG, Sali A (2000) Protein Sci 9:1753–1773

    Article  CAS  Google Scholar 

  34. Sippl MJ (1993) Proteins 17:355–362

    Article  CAS  Google Scholar 

  35. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Adv Drug Delivery Rev 23:3–25

    Article  CAS  Google Scholar 

  36. Gasteiger J, Marsili M (1980) Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  37. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  38. Park H, Lee J, Lee S (2006) Proteins 65:549–554

    Article  CAS  Google Scholar 

  39. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

  40. Mehler EL, Solmajer T (1991) Protein Eng 4:903–910

    Article  CAS  Google Scholar 

  41. Stouten PFW, Frömmel C, Nakamura H, Sander C (1993) Mol Simul 10:97–120

    Article  CAS  Google Scholar 

  42. Kang H, Choi H, Park H (2007) J Chem Inf Model 47:509–514

    Article  CAS  Google Scholar 

  43. Böhm HJ (1994) J Comput-Aided Mol Des 8:243–256

    Article  Google Scholar 

  44. Baker D, Sali A (2001) Science 294:93–96

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bio-MR Research Program (to Y.H.J., Korea Basic Science Institute) of the Korean Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hwangseo Park or Young Ho Jeon.

Appendices

Appendices

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H., Jeon, Y.H. Toward the virtual screening of Cdc25A phosphatase inhibitors with the homology modeled protein structure. J Mol Model 14, 833–841 (2008). https://doi.org/10.1007/s00894-008-0311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0311-2

Keywords

Navigation