Skip to main content
Log in

Studying the structural properties of polyalanine and polyglutamine peptides

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Poly-(Ala) and poly-(Gln) peptides have important biological effects, and can cause various human illnesses and neurodegenerative diseases. Conformational analysis of these homo-oligopeptides (HOPs) was carried out by simulated annealing in order to identify their structural properties regarding secondary structures and intramolecular H-bonding patterns. Poly-(Ala) and poly-(Gln) peptides composed of 7, 10, 14 or 20 amino acids were modelled in both charged and terminally blocked forms. In the case of conformers derived from simulated annealing calculations, the presence of various secondary structural elements (different types of β-turns, α-helix, 310-helix, poly-proline II helix, parallel and antiparallel β-strands) was investigated. Moreover, the intramolecular H-bonding patterns formed either between the backbone atoms for both HOPs or between the backbone and side-chain atoms for the poly-(Gln) peptides were examined. Our results showed that different secondary structural elements (type I and type III β-turns, α-helix, 310-helix, antiparallel β-strand) could be observed in both poly-(Ala) and poly-(Gln) peptides and, according to their presence, characteristic H-bonding patterns formed mainly by i←i+3 and i←i+4 H-bonds could be found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–c

Similar content being viewed by others

References

  1. Brown LY, Brown SA (2004) Trends Genet 20:51–58

    Article  CAS  Google Scholar 

  2. Perutz MF (1996) Curr Opin Struct Biol 6:848–858

    Article  CAS  Google Scholar 

  3. Perutz MF (1999) Trends Biochem Sci 24:58–63

    Article  CAS  Google Scholar 

  4. Ripoll DR, Scheraga HA (1988) Biopolymers 27:1283–1303

    Article  CAS  Google Scholar 

  5. Mortenson PN, Wales DJ (2001) J Chem Phys 114:6443–6454

    Article  CAS  Google Scholar 

  6. Mortenson PN, Evans DA, Wales DJ (2002) J Chem Phys 117:1363–1376

    Article  CAS  Google Scholar 

  7. Daggett V, Kollman PA, Kuntz ID (1991) Biopolymers 31:1115–1134

    Article  CAS  Google Scholar 

  8. Bertsch RA, Vaidehi N, Chan SI, Goddard III WA (1998) Proteins 33:343–357

    Article  CAS  Google Scholar 

  9. Takano M, Yamato T, Higo J, Suyama A, Nagayama K (1999) J Am Chem Soc 121:605–612

    Article  CAS  Google Scholar 

  10. Fiori WR, Miick SM, Millhauser GL (1993) Biochemistry 32:11957–11962

    Article  CAS  Google Scholar 

  11. Miick SM, Martinez GV, Fiori WR, Todd AP, Millhauser GL (1992) Nature 359:653–655

    Article  CAS  Google Scholar 

  12. Miick SM, Casteel KM, Millhauser GL (1993) Biochemistry 32:8014–8021

    Article  CAS  Google Scholar 

  13. Shi Z, Olson CA, Rose GD, Baldwin RL, Kallenbach NR (2002) Proc Natl Acad Sci USA 99:9190–9195

    Article  CAS  Google Scholar 

  14. McColl IH, Blanch EW, Hecht L, Kallenbach NR, Barron LD (2004) J Am Chem Soc 126:5076–5077

    Article  CAS  Google Scholar 

  15. Kentsis A, Mezei M, Gindin T, Osman R (2004) Proteins 55:493–501

    Article  CAS  Google Scholar 

  16. Mezei M, Fleming PJ, Srinivasan R, Rose GD (2004) Proteins 55:502–507

    Article  CAS  Google Scholar 

  17. Garcia AE (2004) Polymer 45:669–676

    Article  CAS  Google Scholar 

  18. Levy Y, Jortner J, Becker OM (2001) Proc Natl Acad Sci USA 98:2188–2193

    Article  CAS  Google Scholar 

  19. Ross CA, Poirier MA, Wanker EE, Amzel M (2003) Proc Natl Acad Sci USA 100:1–3

    Article  CAS  Google Scholar 

  20. Altschuler EL, Hud NV, Mazrimas JA, Rupps B (1997) J Pept Res 50:73–75

    Article  CAS  Google Scholar 

  21. Chen S, Berthelier V, Yang W, Wetzel R (2001) J Mol Biol 311:173–182

    Article  CAS  Google Scholar 

  22. Wang X, Vitalis A, Wyczalkowski MA, Pappu RW (2006) Proteins 63:297–311

    Article  CAS  Google Scholar 

  23. Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Proc Natl Acad Sci USA 91:5355–5358

    Article  CAS  Google Scholar 

  24. Sharma D, Sharma S, Pasha S, Brahmachari SK (1999) FEBS Lett 456:181–185

    Article  CAS  Google Scholar 

  25. Perutz MF, Finch JT, Berriman J, Lesk A (2002) Proc Natl Acad Sci USA 99:5591–5595

    Article  CAS  Google Scholar 

  26. Stork M, Giese A, Kretzschmar HA, Tavan P (2005) Biophys J 88:2442–2451

    Article  CAS  Google Scholar 

  27. Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9, University of California, San Francisco

  28. Wang J, Cieplak P, Kollman PA (2000) J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  29. Hawkins GD, Cramer CJ, Truhlar DG (1996) J Phys Chem 100:19824–19839

    Article  CAS  Google Scholar 

  30. Hawkins GD, Cramer CJ, Truhlar DG (1995) Chem Phys Lett 246:122–129

    Article  CAS  Google Scholar 

  31. Makowska J, Rodziewicz-Motowidlo S, Baginska K, Vila JA, Liwo A, Chmurzynski L, Scheraga HA (2006) Proc Natl Acad Sci USA 103:1744–1749

    Article  CAS  Google Scholar 

  32. Makowska J, Rodziewicz-Motowidlo S, Baginska K, Makowski M, Vila JA, Liwo A, Chmurzynski L, Scheraga HA (2007) Biophys J 92:2904–2917

    Article  CAS  Google Scholar 

  33. Schweitzer-Stenner R, Measey TJ (2007) Proc Natl Acad Sci USA 104:6649–6654

    Article  CAS  Google Scholar 

  34. Chellgren BW, Miller A-F, Creamer TP (2006) J Mol Biol 361:362–371

    Article  CAS  Google Scholar 

  35. Daggett V, Levitt M (1992) J Mol Biol 223:1121–1138

    Article  CAS  Google Scholar 

  36. Huo S, Straub JE (1999) Proteins 36:249–261

    Article  CAS  Google Scholar 

  37. Ding F, Borreguero JM, Buldyrey SV, Stanley HE, Dokholyan NV (2003) Proteins 53:220–228

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants GVOP-3.1.1.-2004-05-0492/3.0 and RET 08/2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Leitgeb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leitgeb, B., Kerényi, Á., Bogár, F. et al. Studying the structural properties of polyalanine and polyglutamine peptides. J Mol Model 13, 1141–1150 (2007). https://doi.org/10.1007/s00894-007-0241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0241-4

Keywords

Navigation