Skip to main content

Advertisement

Log in

LigProf: A simple tool for in silico prediction of ligand-binding sites

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

With the increasing amount of data provided by both high-throughput sequencing and structural genomics studies, there is a growing need for tools to augment functional predictions for protein sequences. Broad descriptions of function can be provided by establishing the presence of protein domains associated with a particular function. To extend the domain-based annotation, LigProf provides predictions of potential ligands that bind to a protein, as well as critical residues that stabilize ligands. A P-value statistic for estimating the significance of motif occurrence is provided for all sites. Although the usefulness of the method will rise with increasing numbers of crystallographically solved molecules deposited in the PDB database, we show that it can already be applied successfully to the highly represented ligand-bound protein kinase domains of viral and human origin. The LigProf webserver is freely available at: http://www.cropnet.pl/ligprof. At present, LigProf descriptors annotate and extend major protein families from the PfamA database.

Information flow in LigProf database construction pipeline

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hegyi H, Gerstein M (2001) Genome Res 11:1632–1640

    Article  CAS  Google Scholar 

  2. Minshull J, Ness JE, Gustafsson C, Govindarajan S (2005) Curr Opin Chem Biol 9:202–209

    Article  CAS  Google Scholar 

  3. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucl Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  4. Devos D, Valencia A (2001) Trends Genet 17:429–431

    Article  CAS  Google Scholar 

  5. Rost B, Liu J, Nair R, Wrzeszczynski KO, Ofran Y (2003) Cell Mol Life Sci 60:2637–2650

    Article  CAS  Google Scholar 

  6. Green ML, Karp PD (2005) Nucl Acids Res 33:4035–4039

    Article  CAS  Google Scholar 

  7. George RA, Spriggs RV, Thornton JM, Al-Lazikani B, Swindells MB (2004) Bioinformatics 20(Suppl 1):i130–i136

    Article  CAS  Google Scholar 

  8. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A (2006) Nucl Acids Res 34:D247–D251

    Article  CAS  Google Scholar 

  9. Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2006) Nucl Acids Res 32:D142–D144

    Article  Google Scholar 

  10. Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki C, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2005) Nucl Acids Res 33:D192–196

    Article  CAS  Google Scholar 

  11. George RA, Spriggs RV, Bartlett GJ, Gutteridge A, MacArthur MW, Porter CT, Al-Lazikani B, Thornton JM, Swindells MB (2005) Proc Natl Acad Sci USA 102:12299–12304

    Article  CAS  Google Scholar 

  12. Gold ND, Jackson RM (2006) J Mol Biol 355:1112–1124

    Article  CAS  Google Scholar 

  13. Shatsky M, Shulman-Peleg A, Nussinov R, Wolfson HJ (2006) J Comput Biol 13:407–428

    Article  CAS  Google Scholar 

  14. Stoll V, Stewart KD, Maring CJ, Muchmore S, Giranda V, Gu YG, Wang G, Chen Y, Sun M, Zhao C, Kennedy AL, Madigan DL, Xu Y, Saldivar A, Kati W, Laver G, Sowin T, Sham HL, Greer J, Kempf D (2003) Biochemistry 42:718–727

    Article  CAS  Google Scholar 

  15. Terasaka T, Kinoshita T, Kuno M, Seki N, Tanaka K, Nakanishi I (2004) J Med Chem 47:3730–3743

    Article  CAS  Google Scholar 

  16. Schafferhans A, Klebe G (2001) J Mol Biol 307:407–427

    Article  CAS  Google Scholar 

  17. Carpy AJ, Marchand-Geneste N (2006) SAR QSAR Environ Res 17:1–10

    CAS  Google Scholar 

  18. Snyder KA, Feldman HJ, Dumontier M, Salama JJ, Hogue CW (2006) BMC Bioinformatics 7:152

    Article  CAS  Google Scholar 

  19. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucl Acids Res 28:235–242

    Article  CAS  Google Scholar 

  20. Sobolev V, Sorokine A, Prilusky J, Abola EE, Edelman M (1999) Bioinformatics 15:327–332

    Article  CAS  Google Scholar 

  21. Eddy SR (1998) Bioinformatics 14:755–763

    Article  CAS  Google Scholar 

  22. Pils B, Copley RR, Schultz J (2005) BMC Bioinformatics 6:210

    Article  CAS  Google Scholar 

  23. Sneath PHA, Sokal RR (1973) WH Freeman, San Francisco

  24. Gribskov M, McLachlan AD, Eisenberg D (1987) Proc Natl Acad Sci USA 84:4355–4358

    Article  CAS  Google Scholar 

  25. Tudos E, Cserzo M, Simon I (1990) Int J Pept Protein Res 36:236–239

    Article  CAS  Google Scholar 

  26. Magliery TJ, Regan L (2005) BMC Bioinformatics 30:240

    Article  CAS  Google Scholar 

  27. Lichtarge O, Bourne HR, Cohen FE (1996) J Mol Biol 257:342–358

    Article  CAS  Google Scholar 

  28. Mihalek I, Res I, Lichtarge O (2004) J Mol Biol 336:1265–1282

    Article  CAS  Google Scholar 

  29. Johnson JM, Church GM (2000) Proc Natl Acad Sci USA 97:3965–3970

    Article  CAS  Google Scholar 

  30. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M (2003) Nucl Acids Res 31:365–370

    Article  CAS  Google Scholar 

  31. Henikoff S, Henikoff JG (1992) Proc Natl Acad Sci USA 89:10915–10919

    Article  CAS  Google Scholar 

  32. Wu TD, Nevill-Manning CG, Brutlag DL (2000) Bioinformatics 16:233–244

    Article  CAS  Google Scholar 

  33. Sali A, Blundell TL (1993) J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  34. Elofsson A (2002) Proteins 46:330–339

    Article  CAS  Google Scholar 

  35. Kalinina OV, Mironov AA, Gelfand MS, Rakhmaninova AB (2004) Protein Sci 13:443–456

    Article  CAS  Google Scholar 

  36. Hamelryck T, Manderick B (2003) Bioinformatics 19:2308–2310

    Article  CAS  Google Scholar 

  37. Yang XL, Otero FJ, Skene RJ, McRee DE, Schimmel P, Pouplana L Ribas de (2003) Proc Natl Acad Sci USA 100:15376–15380

    Article  CAS  Google Scholar 

  38. Li W, Jaroszewski L, Godzik A (2002) Bioinformatics 18:77–82

    Article  CAS  Google Scholar 

  39. Qiu X, Janson CA, Smith WW, Green SM, McDevitt P, Johanson K, Carter P, Hibbs M, Lewis C, Chalker A, Fosberry A, Lalonde J, Berge J, Brown P, Houge-Frydrych CS, Jarvest RL (2001) Protein Sci 10:2008–2016

    Article  CAS  Google Scholar 

  40. Hagglund R, Munger J, Poon AP, Roizman B (2002) J Virol 76:743–754

    Article  CAS  Google Scholar 

  41. Kato A, Yamamoto M, Ohno T, Tanaka M, Sata T, Nishiyama Y, Kawaguchi Y (2006) J Virol 80:1476–1486

    Article  CAS  Google Scholar 

  42. Prichard MN, Britt WJ, Daily SL, Hartline CB, Kern ER (2005) J Virol 79:15494–15502

    Article  CAS  Google Scholar 

  43. Mestres J (2005) Drug Discov Today 10:1629–1637

    Article  CAS  Google Scholar 

  44. Diwan P, Lacasse JJ, Schang LM (2004) J Virol 78:9352–9365

    Article  CAS  Google Scholar 

  45. Schang LM, Coccaro E, Lacasse JJ (2005) Nucleosides Nucleotides Nucleic Acids 24:829–837

    Article  CAS  Google Scholar 

  46. Guo T, Shi Y, Sun Z (2005) Prot Eng Des Sel 18:65–70

    Article  CAS  Google Scholar 

  47. Shulman-Peleg A, Nussinov R, Wolfson HJ (2004) J Mol Biol 339:607–633

    Article  CAS  Google Scholar 

  48. Schmitt S, Kuhn D, Klebe G (2002) J Mol Biol 323:387–406

    Article  CAS  Google Scholar 

  49. Ondrechen MJ, Clifton JG, Ringe D (2001) Proc Natl Acad Sci USA 98:12473–12478

    Article  CAS  Google Scholar 

  50. Kuhn D, Weskamp N, Schmitt S, Hullermeier E, Klebe G (2006) J Mol Biol 359:1023–1044

    Article  CAS  Google Scholar 

  51. Ko J, Murga LF, Wei Y, Ondrechen MJ (2005) Bioinformatics 21:i258–i265

    Article  CAS  Google Scholar 

  52. Kinoshita K, Nakamura H (2005) Protein Sci 14:711–718

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from the following EU projects: DATAGENOM (LSHB-CT-2003-503017) and GENEFUN (LSHG-CT-2004-503567). LSW was supported by a Program for Young Researchers from the Foundation of Polish Science and MNiSW research grants (2 P05A 001 30, PBZ-MNiI-2/1/2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Koczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koczyk, G., Wyrwicz, L.S. & Rychlewski, L. LigProf: A simple tool for in silico prediction of ligand-binding sites. J Mol Model 13, 445–455 (2007). https://doi.org/10.1007/s00894-006-0165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-006-0165-4

Keywords

Navigation