Skip to main content
Log in

LigPath: a module for predictive calculation of a ligand’s pathway into a receptor-application to the gpH1 - receptor

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Until now, the access of ligands into the binding pocket of a G-protein coupled receptor has scarcely been studied using molecular-modeling techniques because of the lack of sufficient algorithms. Neither with Monte-Carlo- nor with Molecular Dynamics Simulations can the penetration of a ligand into the binding pocket of a receptor be calculated because of the excessive amount of computing time needed. Therefore, a new algorithm LigPath for approximate calculation of a ligand’s pathway into the binding pocket has been developed. This new algorithm is based on a linkage of directional guiding of the ligand, Monte-Carlo-Search and minimization. In order to evaluate the performance of the algorithm, the guinea-pig histamine H1 receptor was investigated in combination with one of its potent agonists, histaprodifen, which is proposed to bind in a pocket deep between the transmembrane helices of the receptor. Our calculations show that the amino acids Tyr194, Phe193, Phe436 and Phe433 guide the positively charged histaprodifen from the extracellular part of the receptor into the binding pocket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Guilbert C, Perahia D, Mouawad L (1995) Comp Phys Comm 95:263–273

    Article  Google Scholar 

  2. Izrailev S, Stepaniants S, Isralewitz B, Kosztin D, Lu H, Molnar F, Wriggers W, Schulten K (1998) In: Deuflhard P, Hermans J, Leimkuhler B, Mark A E, Reich S, Skeel RD (eds) Computational molecular dynamics: challenges, methods, ideas, volume 4 of lecture notes in computational science and engineering. Springer, Berlin Heidelberg New York, pp 39–65

    Google Scholar 

  3. Isralewitz B, Izrailev S, Schulten K (1997) Biophys J 73:2972–2979

    CAS  Google Scholar 

  4. Kosztin D, Izrailev S, Schulten K (1999) Biophys J 76:188–197

    Article  CAS  Google Scholar 

  5. Tokarski JS, Hopfinger AJ (1997) J Chem Inf Comput 37:792–811

    Article  CAS  Google Scholar 

  6. Biebermann H, Schöneberg T, Schulz A, Krause G, Grüters A, Schultz G, Gudermann (1998) FASEB J 12:1461–1471

    CAS  Google Scholar 

  7. Czaplewski C, Kazmierkiewicz R, Ciarkowski J (1998) J Comput Aided Mol Des 12:275–287

    Article  CAS  Google Scholar 

  8. Colson A-O, Perlman JH, Smolyar A, Gershengorn M, Osman R (1998) Biophys J 74:1087–1100

    CAS  Google Scholar 

  9. Salo OMH, Lahtela-Kakkonen M, Gynther J, Järvinen T, Poso A (2004) J Med Chem 47:3048–3057

    Article  CAS  Google Scholar 

  10. Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel LJ, Freer ST (1995) Chem Biol 2:317–324

    Article  CAS  Google Scholar 

  11. Gershengorn MC, Osman R (2001) Endocrinology 142:2–10

    Article  CAS  Google Scholar 

  12. Barnett-Norris J, Hurst DP, Lynch DL, Guarnieri F, Makriyannis A, Reggio PH (2002) J Med Chem 45:3649–3659

    Article  CAS  Google Scholar 

  13. Pardo L, Giraldo J, Martin M, Campillo M (1991) Mol Pharmacol 40:980–987

    CAS  Google Scholar 

  14. Gouldson PR, Winn PJ, Reynolds A (1995) J Med Chem 38:4080–4086

    Article  CAS  Google Scholar 

  15. Barnett-Norris J, Hurst DP, Buehner K, Ballesteros JA, Guarnieri F, Reggio PH (2002) Int J Quant Chem 88:76–86

    Article  CAS  Google Scholar 

  16. Gouldson PR, Kidley NJ, Bywater RP, Psaroudakis G, Brooks HD, Diaz C, Shire D, Reynolds CA (2004) PROTEINS: Struc Func Bioinf 56:67–84

    Article  CAS  Google Scholar 

  17. Sai Ram KVVM, Rambabu G, Sarma JARP, Desiraju GR (2006) J Chem Inf Model (published on Web on 09-May-2006)

  18. Elz S, Kramer K, Leschke C, Schunack W (2000) Eur J Med Chem 35:41–52

    Article  CAS  Google Scholar 

  19. Menghin S, Pertz HH, Kramer K, Seifert R, Schunack W, Elz S (2003) J Med Chem 46:5458–5470

    Article  CAS  Google Scholar 

  20. Seifert R, Wenzel-Seifert K, Bürckstümmer T, Pertz HH, Schunack W, Dove S, Buschauer A, Elz S (2003) J Pharmacol Exp Ther 305:1104–1115

    Article  CAS  Google Scholar 

  21. van der Spoel D, Lindahl E, Hess B, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman D P, Sijbers ALTM, Feenstra KA, van Drunen R, Berendsen HJC (2004) GROMACS 3.2. Department of Biophysical Chemistry, University of Groningen, The Netherlands

    Google Scholar 

  22. RCSB PDB Protein Data Bank

  23. Subramaniam S, Henderson R (2000) Nature 406:653–657

    Article  CAS  Google Scholar 

  24. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) J Comput Chem 25:1656–1676

    Article  CAS  Google Scholar 

  25. Pedretti A, Vistoli G (1996–2006) VEGA ZZ (Software) http://www.ddl.unimi.it/vega/

  26. Ballesteros JA, Shi L, Javitch JA (2001) Mol Pharmacol 60:1–19

    CAS  Google Scholar 

  27. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Science 289:739–745

    Article  CAS  Google Scholar 

  28. SYBYL 7.0 (2004) Tripos Inc

  29. Baldwin JM, Schertler GFX, Unger VM (1997) J Mol Biol 272:144–164

    Article  CAS  Google Scholar 

  30. Gether U (2000) Endocr Rev 21:90–113

    Article  CAS  Google Scholar 

  31. Gether U, Kobilka BK (1998) J Bio Chem 273:17979–17982

    Article  CAS  Google Scholar 

  32. Kobilka B (2004) Mol Pharmacol 65:1060–1062

    Article  CAS  Google Scholar 

  33. Ghanouni P, Steenhuis JJ, Farrens DL, Kobilka BK (2001) Proc Natl Acad Sci USA 98:5997–6002

    Article  CAS  Google Scholar 

  34. Luo X, Zhang D, Weinstein H (1994) Prot Eng 7:1441–1448

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Straßer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straßer, A., Wittmann, HJ. LigPath: a module for predictive calculation of a ligand’s pathway into a receptor-application to the gpH1 - receptor. J Mol Model 13, 209–218 (2007). https://doi.org/10.1007/s00894-006-0152-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-006-0152-9

Keywords

Navigation