Skip to main content
Log in

Modeling the pore structure of voltage-gated sodium channels in closed, open, and fast-inactivated conformation reveals details of site 1 toxin and local anesthetic binding

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work molecular modeling was applied to generate homology models of the pore region of the Na v 1.2 and Na v 1.8 isoforms of human voltage-gated sodium channels. The models represent the channels in the resting, open, and fast-inactivated states. The transmembrane portions of the channels were based on the equivalent domains of the closed and open conformation potassium channels KcsA and MthK, respectively. The critical selectivity loops were modeled using a structural template identified by a novel 3D-search technique and subsequently merged with the transmembrane portions. The resulting draft models were used to study the differences of tetrodotoxin binding to the tetrodotoxin-sensitive Na v 1.2 (EC50: 0.012 μM) and -insensitive Na v 1.8 (EC50: 60 μM) isoforms, respectively. Furthermore, we investigated binding of the local anesthetic tetracaine to Na v 1.8 (EC50: 12.5 μM) in resting, conducting, and fast-inactivated state. In accordance with experimental mutagenesis studies, computational docking of tetrodotoxin and tetracaine provided (1) a description of site 1 toxin and local anesthetic binding sites in voltage-gated sodium channels. (2) A rationale for site 1 toxin-sensitivity versus -insensitivity in atomic detail involving interactions of the Na v 1.2 residues F385-I and W943-II. (3) A working hypothesis of interactions between Na v 1.8 in different conformational states and the local anesthetic tetracaine.

Tetracaine in complex with Nav1.8 in fast-inactivated form. The ligand is represented in CPK and colored by atom type. Ribbons and amino acids are colored by domain: yellow = domain I, blue = domain II, green = domain III, red = domain IV, pink = inactivation gate. Main interaction partners are shown in CPK. a) Tetracaine bound to the inner vestibule. View along the membrane plane. b) Same view as in a but limited to main interaction partners only. The polar head group of tetracaine interacts with the DEKA-motif residues, its hydrophobic tail with the hydrophobic and mainly aromatic residues of S6-IV and the inactivation gate

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Catterall WA (2000) Neuron 26:13–25

    Article  CAS  Google Scholar 

  2. Hille B (2001) Ion channels of excitable membranes. Sinauer Associates Inc, Sunderland, MA USA

    Google Scholar 

  3. Sato C, Ueno Y, Asai K, Takahashi K, Sato M, Engel A, Fujiyoshi Y (2001) Nature 409:1047–1051

    Article  CAS  Google Scholar 

  4. Ragsdale DS, McPhee JC, Scheuer T, Catterall WA (1994) Science 265:1724–1728

    Article  CAS  Google Scholar 

  5. Ragsdale DS, McPhee JC, Scheuer T, Catterall WA (1996) Proc Natl Acad Sci USA 93:9270–9275

    Article  CAS  Google Scholar 

  6. Linford NJ, Cantrell AR, Qu Y, Scheuer T, Catterall WA (1998) Proc Natl Acad Sci USA 95:13947–13952

    Article  CAS  Google Scholar 

  7. Wang GK, Quan C, Wang S (1998) Pflugers Arch 435:293–302

    Article  CAS  Google Scholar 

  8. Wright SN, Wang SY, Wang GK (1998) Mol Pharmacol 54:733–739

    CAS  Google Scholar 

  9. Nau C, Wang SY, Strichartz GR, Wang GK (1999) Mol Pharmacol 56:404–413

    CAS  Google Scholar 

  10. Sunami A, Glaaser IW, Fozzard HA (2000) Proc Natl Acad Sci USA 97:2326–2331

    Article  CAS  Google Scholar 

  11. Yarov-Yarovoy V, Brown J, Sharp EM, Clare JJ, Scheuer T, Catterall WA (2001) J Biol Chem 276:20–27

    Article  CAS  Google Scholar 

  12. Yarov-Yarovoy V, McPhee JC, Idsvoog D, Pate C, Scheuer T, Catterall WA (2002) J Biol Chem 277:35393–35401

    Article  CAS  Google Scholar 

  13. Vassilev PM, Scheuer T, Catterall WA (1988) Science 241:1658–1661

    Article  CAS  Google Scholar 

  14. Stuhmer W, Conti F, Suzuki H, Wang XD, Noda M, Yahagi N, Kubo H, Numa S (1989) Nature 339:597–603

    Article  CAS  Google Scholar 

  15. Patton DE, West JW, Catterall WA, Goldin AL (1992) Proc Natl Acad Sci USA 89:10905–10909

    Article  CAS  Google Scholar 

  16. West JW, Patton DE, Scheuer T, Wang Y, Goldin AL Catterall WA (1992) Proc Natl Acad Sci USA 89:10910–10914

    Article  CAS  Google Scholar 

  17. Penzotti JL, Fozzard HA, Lipkind GM, Dudley Jr SC (1998) Biophys J 75:2647–2657

    CAS  Google Scholar 

  18. Lipkind GM, Fozzard HA (1994) Biophys J 66:1–13

    CAS  Google Scholar 

  19. Guy HR, Durell SR (1996) Developing three-dimensional models of ion channel proteins. In: Narahashi T (ed) Ion Channels, vol 4. Plenum, New York, London, pp 1–40

    Google Scholar 

  20. Guy HR, Durell SR (1995) Structural model of Na+, Ca2+, and K+ channels. In: Dawson D (ed) Ion channels and genetic diseases. The Rockefeller University Press, New York, pp 1–16

    Google Scholar 

  21. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Nature 417:515–522

    Article  CAS  Google Scholar 

  22. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Nature 417:523–526

    Article  CAS  Google Scholar 

  23. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) Science 280:69–77

    Article  CAS  Google Scholar 

  24. Lipkind GM, Fozzard HA (2000) Biochemistry 39:8161–8170

    Article  CAS  Google Scholar 

  25. Khan A, Romantseva L, Lam A, Lipkind G, Fozzard HA (2002) J Physiol 543:71–84

    Article  CAS  Google Scholar 

  26. Tikhonov DB, Zhorov BS (2005) Biophys J 88:184–197

    Article  CAS  Google Scholar 

  27. Guex N, Peitsch MC (1997) Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  28. Teplyakov A, Obmolova G, Badet-Denisot MA, Badet B, Polikarpov I (1998) Structure 6:1047–1055

    Article  CAS  Google Scholar 

  29. van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular Simulation: The GROMOS 96 Manual and User Guide. vdf Hochschulverlag AG an der ETH Zürich, Zürich

  30. Rohl CA, Boeckman FA, Baker C, Scheuer T, Catterall WA, Klevit RE (1999) Biochemistry 38:855–861

    Article  CAS  Google Scholar 

  31. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  32. McMartin C, Bohacek RS (1997) J Comput Aided Mol Des 11:333–344

    Article  CAS  Google Scholar 

  33. Fozzard HA, Lipkind G (1996) Jpn Heart J 37:683–692

    CAS  Google Scholar 

  34. Hille B (1971) J Gen Physiol 58:599–619

    Article  CAS  Google Scholar 

  35. Hille B (1975) Biophys J 15:615–619

    CAS  Google Scholar 

  36. Guo XT, Uehara A, Ravindran A, Bryant SH, Hall S, Moczydlowski E (1987) Biochemistry 26:7546–7556

    Article  CAS  Google Scholar 

  37. Noda M, Suzuki H, Numa S, Stuhmer W (1989) FEBS Lett 259:213–216

    Article  CAS  Google Scholar 

  38. Ravindran A, Moczydlowski E (1989) Biophys J 55:359–365

    CAS  Google Scholar 

  39. Terlau H, Heinemann SH, Stuhmer W, Pusch M, Conti F, Imoto K, Numa S (1991) FEBS Lett 293:93–96

    Article  CAS  Google Scholar 

  40. Doyle DD, Guo Y, Lustig SL, Satin J, Rogart RB, Fozzard HA (1993) J Gen Physiol 101:153–182

    Article  CAS  Google Scholar 

  41. Elliott AA, Elliott JR (1993) J Physiol 463:39–56

    CAS  Google Scholar 

  42. Gallivan JP, Dougherty DA (1999) Proc Natl Acad Sci USA 96:9459–9464

    Article  CAS  Google Scholar 

  43. Hille B (1977) J Gen Physiol 69:497–515

    Article  CAS  Google Scholar 

  44. Vedantham V, Cannon SC (1999) J Gen Physiol 113:7–16

    Article  CAS  Google Scholar 

  45. Scheuer T (1999) J Gen Physiol 113:3–6

    Article  CAS  Google Scholar 

  46. Noda M, Ikeda T, Kayano T, Suzuki H, Takeshima H, Kurasaki M, Takahashi H, Numa S (1986) Nature 320:188–192

    Article  CAS  Google Scholar 

  47. Akopian AN, Sivilotti L, Wood JN (1996) Nature 379:257–262

    Article  CAS  Google Scholar 

  48. Choudhary G, Yotsu-Yamashita M, Shang L, Yasumoto T, Dudley Jr SC (2003) Biophys J 84:287–294

    Article  CAS  Google Scholar 

  49. Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry: principles of structure and reactivity. Harper Collins, New York

    Google Scholar 

  50. Allen TW, Andersen OS, Roux B (2004) Proc Natl Acad Sci USA 101:117–122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

HS thanks the Swiss Institute of Bioinformatics for support of this work. He also thanks GlaxoSmithKline for generous travel grants and a modified version of SPDBV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Scheib.

Electronic supplementary materials

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheib, H., McLay, I., Guex, N. et al. Modeling the pore structure of voltage-gated sodium channels in closed, open, and fast-inactivated conformation reveals details of site 1 toxin and local anesthetic binding. J Mol Model 12, 813–822 (2006). https://doi.org/10.1007/s00894-005-0066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0066-y

Keywords

Navigation