Skip to main content
Log in

Non-stochastic and stochastic linear indices of the molecular pseudograph’s atom-adjacency matrix: a novel approach for computational in silico screening and “rational” selection of new lead antibacterial agents

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A novel approach (TOMOCOMD-CARDD) to computer-aided “rational” drug design is illustrated. This approach is based on the calculation of the non-stochastic and stochastic linear indices of the molecular pseudograph’s atom-adjacency matrix representing molecular structures. These TOMOCOMD-CARDD descriptors are introduced for the computational (virtual) screening and “rational” selection of new lead antibacterial agents using linear discrimination analysis. The two structure-based antibacterial-activity classification models, including non-stochastic and stochastic indices, classify correctly 91.61% and 90.75%, respectively, of 1525 chemicals in training sets. These models show high Matthews correlation coefficients (MCC=0.84 and 0.82). An external validation process was carried out to assess the robustness and predictive power of the model obtained. These QSAR models permit the correct classification of 91.49% and 89.31% of 505 compounds in an external test set, yielding MCCs of 0.84 and 0.79, respectively. The TOMOCOMD-CARDD approach compares satisfactorily with respect to nine of the most useful models for antimicrobial selection reported to date. Finally, an in silico screening of 87 new chemicals reported in the anti-infective field with antibacterial activities is developed showing the ability of the TOMOCOMD-CARDD models to identify new lead antibacterial compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Claus BL, Underwood DJ (2002) Drug Disc Today 7:957–966

    Article  Google Scholar 

  2. Mosqueira A (ed) (1994) Diseño de Medicamentos. Farmaindustria, Madrid

    Google Scholar 

  3. Hass LM, Schwarz PM, Kodali P, Kotlar E, Rice JE, Swope WC (2000) IBM Syst J 40:489–511 (available online at: http://www.research.ibm.com/journal/sj/402/haas.html)

    Google Scholar 

  4. Ricadela A (2001) Information Week. March 1 (available online at: http://www.informationweek.com/828/research.htm)

  5. Estrada E, Uriarte E, Montero A, Teijeira M, Santana L, De Clercq E (2000) J Med Chem 43:1975–1985

    Article  PubMed  CAS  Google Scholar 

  6. Julián-Ortiz JV, Gálvez J, Muñoz-Collado C, García-Domenech R, Gimeneo-Cardona C (1999) J Med Chem 42:3308–3314

    Article  PubMed  CAS  Google Scholar 

  7. González-Díaz H, Marrero-Ponce Y, Hernández I, Bastida I, Tenorio E, Nasco O, Uriarte U, Castañedo N, Cabrera MA, Aguila E, Marrero O, Morales A, Pérez M (2003) Chem Res Toxicol 16:1318–1327

    Article  PubMed  CAS  Google Scholar 

  8. García-García A, Gálvez J, de Julián-Ortiz J-V, García-Domenech R, Muñoz C, Guna R, Borrás R (2004) J Antimicrob Chemother 53:65–73

    Article  PubMed  Google Scholar 

  9. Estrada E, Peña A (2000) Bioorg Med Chem 8:2755–2770

    Article  PubMed  CAS  Google Scholar 

  10. Gozalbes R, Galvez J, Moreno A, Garcia-Domenech R (1999) J Pharm Pharmacol 51:111–117

    Article  PubMed  CAS  Google Scholar 

  11. González H, Olazabal E, Castañedo N, Hernádez I, Morales A, Serrano HS, González J, Ramos R (2002) J Mol Mod 8:237–245

    Article  Google Scholar 

  12. García-Domenech R, de Julián-Ortiz JV (1998) J Chem Inf Comput Sci 38:445–449

    Article  PubMed  Google Scholar 

  13. Tomás-Vert F, Pérez-Giménez F, Salabert-Salvador MT, García-March FJ, Jaén-Oltra J (2000) J Mol Struct (Theochem) 504:249–259

    Article  Google Scholar 

  14. Mishra RK, Garcia-Domenech R, Galvez J (2001) J Chem Inf Comput Sci 41:387–393

    Article  PubMed  CAS  Google Scholar 

  15. Cronin MTD, Aptula AO, Dearden JC, Duffy JC, Netzeva TI, Patel H, Rowe PH, Schultz TW, Worth AP, Voutzoulidis K, Schüürmann G (2002) J Chem Inf Comput Sci 42:869–878

    Article  PubMed  CAS  Google Scholar 

  16. Molina E, González–Díaz H, Pérez-González M, Rodríguez E, Uriarte E (2004) J Chem Inf Comput Sci 44:515–521

    Article  PubMed  CAS  Google Scholar 

  17. Murcia-Soler M, Pérez-Giménez F, García-March J, Salabert-Salvador Ma T, Díaz-Villanueva W, Castro-Bleda M, Villanueva-Pareja A (2004) J Chem Inf Comput Sci 44:1031–1041

    Article  PubMed  CAS  Google Scholar 

  18. Galimand M, Courvalin P, Lambert T (2003) 47:2565–2571

    CAS  Google Scholar 

  19. Tenover FC (2001) Clin Infect Dis 33:S108–S115

    Article  PubMed  CAS  Google Scholar 

  20. Murray BE (2000) 342:710–721

    MathSciNet  CAS  Google Scholar 

  21. Williams RJ, Heymann DL (1998) Science 279:1153–1154

    Article  PubMed  CAS  Google Scholar 

  22. Livermore DM (2000) Int J Antimicrob Agents 16:S3–S10

    Article  PubMed  CAS  Google Scholar 

  23. Murray BE (1998) Emerg Infect Dis 4:37–47

    Article  PubMed  CAS  Google Scholar 

  24. Cetinkaya Y, Falk P, Mayhall CG (2000) Clin Microb Rev 13:686–707

    Article  CAS  Google Scholar 

  25. Amyes SGB, Towner KJ, Carter GI, Thomson CJ, Young HK (1989) J Antimicrob Chemother 24:111–119

    Article  CAS  Google Scholar 

  26. Bambeke FV, Glupczynski Y, Plésiat P, Pechère JC, Tulkens PM (2003) J Antimicrob Chemother 51:1055–1065

    Article  PubMed  CAS  Google Scholar 

  27. Wylie BA, Amyes SGB, Young HK, Koornof HJ (1988) J Antimicrob Chemother 22:429–435

    Article  PubMed  CAS  Google Scholar 

  28. Nagai K, Davies TA, Jacobs M R, Appelbaum PC (2002) Antimicrob Agents Chemother 46:1273–1280

    Article  PubMed  CAS  Google Scholar 

  29. Jung F, Delvare C, Boucherot D, Hamon A (1991) J Med Chem 34:1110–1116

    Article  PubMed  CAS  Google Scholar 

  30. Fung-Tomc JC, Clark J, Minassian B, Pucci M, Tsai YH, Gradelski E, Lamb L, Medina I, Huczko E, Kolek B, Chaniewski S, Ferraro C, Washo T, Bonner DP (2002) Antimicrob Agents Chemother 46:971–976

    Article  PubMed  CAS  Google Scholar 

  31. Macchia M, Menchini E, Orlandini E, Rossello A, Broccali G, Visconti M (1995) Farmaco 50:713–718

    PubMed  CAS  Google Scholar 

  32. Choi KH, Hong JS, Kim SK, Lee DK, Yoon SJ, Choi EC (1997) J Antimicrob Chemother 39:509–514

    Article  PubMed  CAS  Google Scholar 

  33. Sum PE, Petersen P (1999) Bioorg Med Chem Lett 17:1459–1462

    Article  Google Scholar 

  34. Chopra I (2001) Curr Opin Pharmacol 1:464–469

    Article  PubMed  CAS  Google Scholar 

  35. Colca JR, McDonal WG, Waldon DJ, Thomasco LM, Gadwood RC, Lund ET, Cavey GS, Mathews WR, Adams LD, Cecil ET, Pearson JD, Bock JH, Mott JE, Shinabarger DL, Xiong L, Mankin AS (2003) J Biol Chem 278:21972–21979

    Article  PubMed  CAS  Google Scholar 

  36. Domagala JM, Bridges AJ, Culbertson TP, Gambino L, Hagen SE, Karrick G (1991) J Med Chem 34:1142–1154

    Article  PubMed  CAS  Google Scholar 

  37. Kus C, Göker H, Ayhan G, Ertan R, Altanlar N, Akin A (1996) Farmaco 51:413–417

    PubMed  CAS  Google Scholar 

  38. Payne DJ, Miller WH, Berry V, Brosky J, Burgess WJ, Chen E, DeWolf WE, Fosberry AP, Greenwood R, Head MS, Heerding DA, Janson CA, Jaworski DD, Keller PM, Manley PJ, Moore TD, Newlander C, Pearson S, Polizzi BJ, Qiu X, Rittenhouse SF, Radosti S, Salyers KL, Seefeld MA, Smyth MG, Takata DT, Uzinskas IN, Vaidya K, Wallis NG, Winram SB, Yuan CCK, Huffman WF (2002) Antimicrob Agents Chemother 46:3118–3124

    Article  PubMed  CAS  Google Scholar 

  39. Chopra I, Hodgson J, Metcalf B, Poste G (1997) Antimicrob Agents Chemother 41:497–503

    PubMed  CAS  Google Scholar 

  40. Garcia-Garrote F, Cercenado E, Martin-Pedroviejo J, Cuevas O, Bouza E (2001) J Antimicrob Chemother 47:681–684

    Article  PubMed  CAS  Google Scholar 

  41. Marrero-Ponce Y, Romero V (2002) TOMOCOMD software. Central University of Las Villas. TOMOCOMD (TOpological MOlecular COMputer Design) for Windows, Version 1.0 is a preliminary experimental version; in future a professional version will be obtained upon request to Marrero Y: yovanimp@qf.uclv.edu.cu or ymarrero77@yahoo.es

  42. Marrero-Ponce Y (2003) Molecules 8:687–726

    Google Scholar 

  43. Marrero-Ponce Y (2004) J Chem Inf Comput Sci 44:2010–2026

    Article  PubMed  CAS  Google Scholar 

  44. Marrero-Ponce Y (2004) Bioorg Med Chem 12:6351–6369

    Article  PubMed  CAS  Google Scholar 

  45. Marrero-Ponce Y, Castillo-Garit JA, Torrens F, Romero-Zaldivar V, Castro E (2004) Molecules 9:1100–1123

    Google Scholar 

  46. Marrero-Ponce Y, González-Díaz H, Romero-Zaldivar V, Torrens F, Castro EA (2004) Bioorg Med Chem 12:5331–5342

    Article  PubMed  CAS  Google Scholar 

  47. Marrero-Ponce Y, Cabrera MA, Romero V, Ofori E, Montero LA (2003) Int J Mol Sci 4:512–536

    Article  Google Scholar 

  48. Marrero-Ponce Y, Cabrera MA, Romero V, González DH, Torrens F (2004) J Pharm Pharm Sci 7:186–199

    PubMed  Google Scholar 

  49. Marrero-Ponce Y, Cabrera MA, Romero-Zaldivar V, Bermejo M, Siverio D, Torrens F (2005) Internet Electronic J Mol Des (accepted for publication)

  50. Marrero-Ponce Y, Castillo-Garit JA, Olazabal E, Serrano HS, Morales A, Castañedo N, Ibarra-Velarde F, Huesca-Guillen A, Jorge E, Sánchez AM, Torrens F, Castro EA (2005) Bioorg Med Chem 13:1005–1020

    Article  PubMed  CAS  Google Scholar 

  51. Marrero-Ponce Y, Castillo-Garit JA, Olazabal E, Serrano HS, Morales A, Castañedo N, Ibarra-Velarde F, Huesca-Guillen A, Jorge E, del Valle A, Torrens F, Castro EA (2004) J Comput Aided Mol Des 18:615–633

    Article  PubMed  CAS  Google Scholar 

  52. Marrero-Ponce Y, Huesca-Guillen A, Ibarra-Velarde F (2004) J Theor Chem (THEOCHEM) DOI: 10.1016/j.theochem.2004.11.027

  53. Marrero-Ponce Y, Montero-Torres A, Romero-Zaldivar C, Iyarreta-Veitía I, Mayón Peréz M, García Sánchez R (2005) Bioorg Med Chem 13:1293–1304

    Article  PubMed  CAS  Google Scholar 

  54. Marrero-Ponce Y, Nodarse D, González-Díaz H, Ramos de Armas R, Romero-Zaldivar V, Torrens F, Castro E (2004) Int J Mol Sci 5:276–293

    Google Scholar 

  55. Marrero-Ponce Y, Medina R, Castro EA, de Armas R, González H, Romero V, Torrens F (2004) Molecules 9:1124–1147

    Google Scholar 

  56. Marrero-Ponce Y, Medina-Marrero R, Castillo-Garit JA, Romero-Zaldivar V, Torrens F, Castro EA (2005) Bioorg Med Chem (accepted for publication)

  57. Kier LB, Hall LH (1986) Molecular connectivity in structure-activity analysis. Research Studies Press, Letchworth, UK

    Google Scholar 

  58. Pauling L (1939) The nature of chemical bond. Cornell University Press, New York, pp 2–60

    Google Scholar 

  59. Klein DJ (2003) Internet Electron. J Mol Des 2:814–834

    CAS  Google Scholar 

  60. Negwer M (1987) Organic-chemical drugs and their synonyms. Akademie-Verlag, Berlin

    Google Scholar 

  61. Chapman& Hall (1996) The merck index, 12th edn

  62. Glasby JS (1978) Encyclopedia of antibiotics. Woodhouse, Manchester

    Google Scholar 

  63. Mc Farland JW, Gans DJ (1995) Cluster significance analysis. In: Manhnhold R, Krogsgaard-Larsen P, Timmerman H (eds) Method and principles in medicinal chemistry, vol 2. Chemometric methods in molecular design. van Waterbeemd H (ed) VCH, Weinheim, pp 295–307

  64. Johnson RA, Wichern DW (1988) Applied multivariate statistical analysis. Prentice Hall, NJ

    Google Scholar 

  65. Bryskier A (1997) Clin Infect Dis 27:865–883

    Article  Google Scholar 

  66. Bryskier A (2000) Clin Infect Dis 31:1423–1466

    Article  PubMed  CAS  Google Scholar 

  67. STATISTICA, Version 5.5 (1999) Statsoft Inc.

  68. Wold S, Erikson L (1995) Statistical validation of QSAR results. Validation tools. In: van de Waterbeemd H (ed) Chemometric methods in molecular design. VCH Publishers, New York, pp 309–318

    Google Scholar 

  69. Golbraikh A, Tropsha A (2002) J Mol Graphic Modell 20:269–276

    Article  CAS  Google Scholar 

  70. Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H (2000) Bioinformatics 16:412–424

    Article  PubMed  CAS  Google Scholar 

  71. Watson C (2003) Biosilico 1:83–85

    Article  Google Scholar 

  72. Drie JHV, Lajiness MS (1998) Drug Disc Today 3:274–283

    Article  Google Scholar 

  73. Lajiness M (1990) Molecular similarity-based methods for selecting compounds for screening. In: Rouvray DH (ed) Computacional chemical graph theory. Nova Science, New York

    Google Scholar 

Download references

Acknowledgments

The authors thank both referees for their critical opinions about the manuscript, which have significantly contributed to improving its presentation and quality. F.T. acknowledges financial support from the Spanish MCT (Plan Nacional I+D+I, Project No. BQU2001-2935-C02-01) and Generalitat Valenciana (DGEUI INF01-051 and INFRA03-047, and OCYT GRUPOS03-173). Finally, Marrero-Ponce is also indebted to the editorial assistant, Isabelle Bundesmann for her kind attention. One of the authors (M-P. Y) thanks the program ‘Estades Temporals per a Investigadors Convidats’ for a fellowship to work at Valencia University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yovani Marrero-Ponce.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrero-Ponce, Y., Marrero, R.M., Torrens, F. et al. Non-stochastic and stochastic linear indices of the molecular pseudograph’s atom-adjacency matrix: a novel approach for computational in silico screening and “rational” selection of new lead antibacterial agents. J Mol Model 12, 255–271 (2006). https://doi.org/10.1007/s00894-005-0024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0024-8

Keywords

Navigation