Skip to main content

Advertisement

Log in

Molecular dynamics simulations of 14 HIV protease mutants in complexes with indinavir

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The molecular mechanisms of HIV drug resistance were studied using molecular dynamics simulations of HIV-1 protease complexes with the clinical inhibitor indinavir. One nanosecond molecular dynamics simulations were run for solvated complexes of indinavir with wild type protease, a control variant and 12 drug resistant mutants. The quality of the simulations was assessed by comparison with crystallographic and inhibition data. Molecular mechanisms that contribute to drug resistance include structural stability and affinity for inhibitor. The mutants showed a range of structural variation from 70 to 140% of the wild type protease. The protease affinity for indinavir was estimated by calculating the averaged molecular mechanics interaction energy. A correlation coefficient of 0.96 was obtained with observed inhibition constants for wild type and four mutants. Based on this good agreement, the trends in binding were predicted for the other mutants and discussed in relation to the clinical data for indinavir resistance.

Figure Poincare map representation for WT protease-indinavir complex. The side chain of Tyr 59 showing the positions of hydrogen atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 a
Fig. 2a, b
Fig. 3a–d
Fig. 4a–c
Fig. 5

Similar content being viewed by others

References

  1. Tamalet C, Pasquier C, Yahi N, Colson P, Poizot-Martin I, Lepeu G, Gallais H, Massip P, Puel J, Izopet J (2000) J Med Virol 61:181–186

    Article  CAS  PubMed  Google Scholar 

  2. Shafer RW, Winters MA, Palmer S, Merigan TC (1998) Ann Intern Med 128:906–911

    CAS  PubMed  Google Scholar 

  3. Hertogs K, Bloor S, Kemp SD, Van den Eynde C, Alcorn TM, Pauwels R, van Houtte M, Staszewski S, Miller V, Larder BA (2000) AIDS 14:1203–1210

    Google Scholar 

  4. Vergne L, Peeters M, Mpoudi-Ngole E, Bourgeois A, Liegeois F, Toure-Kane C, Mboup S, Mulanga-Kabeya C, Saman E, Jourdan J, Reynes J, Delaporte E (2000) J Clin Microbiol 38:3919–3925

    CAS  PubMed  Google Scholar 

  5. Condra JH, Holder DJ, Schleif WA, Blahy OM, Danovich RM, Gabryelski LJ, Graham DJ, Laird D, Quintero JC, Rhodes A, Robbins HL, Roth E, Shivaprakash M, Yang T, Chodakewitz JA, Deutsch PJ, Leavitt RY, Massari FE, Mellors JW, Squires KE, Steigbigel RT, Teppler H, Emini EA (1996) J Virol 70:8270–8276

    CAS  PubMed  Google Scholar 

  6. Brown AJ, Korber BT, Condra JH (1999) AIDS Res Hum Retroviruses 15:247–253

    Article  CAS  PubMed  Google Scholar 

  7. Rhee SY, Gonzales MJ, Kantor R, Betts BJ, Ravela J, Shafer RW (2003) Nucleic Acids Res 31:298–303

    Article  CAS  PubMed  Google Scholar 

  8. Shafer RW, Hsu P, Patick AK, Craig C, Brendel V (1999) J Virol 73:6197–6202

    CAS  PubMed  Google Scholar 

  9. Shafer RW (2002) Clin Microbiol Rev 15:247–277

    Article  CAS  PubMed  Google Scholar 

  10. Wlodawer A, Vondrasek J (1998) Annu Rev Biophys Biomol Struct 27:249–284

    Article  CAS  PubMed  Google Scholar 

  11. Vacca JP, Dorsey BD, Schleif WA, Levin RB, McDaniel SL, Darke PL, Zugay J, Quintero JC, Blahy OM, Roth E, Sardana VV, Schlabach AJ, Graham PI, Condra JH, Gotlib L, Hollaway MK, Lin J, Chen I-W, Vastag K, Ostovic D, Anderson PS, Emini EA, Huff JR (1994) Proc Natl Acad Sci USA 91:4096–4100

    CAS  PubMed  Google Scholar 

  12. Gulnik SV, Suvorov LI, Liu B, Yu B, Anderson B, Mitsuya H, Erickson JW (1995) Biochem 34:9282–9287

    CAS  Google Scholar 

  13. Chen Z, Li Y, Schock HB, Hall D, Chen E, Kuo LC (1995) J Biol Chem 270:433–436

    Google Scholar 

  14. King NM, Melnick L, Prabu-Jeyabalan M, Nalivaika EA, Yang SS, Gao Y, Nie X, Zepp C, Heefner DL, Schiffer CA (2002) Protein Sci 11:418–429

    Article  CAS  PubMed  Google Scholar 

  15. Muzammil S, Ross P, Freire E (2003) Biochemistry 42:631–638

    Article  CAS  PubMed  Google Scholar 

  16. Olsen DB, Stahlhut MW, Rutkowski CA, Schock HB, van Olden AL, Kuo LC (1999) J Biol Chem 274:23699–23701

    Article  CAS  PubMed  Google Scholar 

  17. Ohtaka H, Schon A, Freire E (2003) Biochemistry 42:13659–13666

    Article  CAS  PubMed  Google Scholar 

  18. Harrison RW, Weber IT (1994) Protein Eng 7:1353–1363

    CAS  PubMed  Google Scholar 

  19. Liu H, Müller-Plathe F, van Gusteren WF (1996) J Mol Biol 261:454–469

    Article  CAS  PubMed  Google Scholar 

  20. Trylska J, Grochowski P, McCammon JA (2004) Protein Sci 13:513–528

    Article  CAS  PubMed  Google Scholar 

  21. Collins JR, Burt SK, Erickson JW (1995) Nat Struct Biol 2:334–338

    Article  CAS  PubMed  Google Scholar 

  22. Scott WR, Schiffer CA (2000) Structure Fold Des 8:1259–1265

    Article  CAS  PubMed  Google Scholar 

  23. Piana S, Carloni P, Rothlisberger U (2002) Protein Sci 11:2393–2402

    Article  CAS  PubMed  Google Scholar 

  24. Wang W, Kollman PA (2001) Proc Natl Acad Sci USA 98:14937–14942

    Article  CAS  PubMed  Google Scholar 

  25. Weber IT, Harrison RW (1999) Protein Eng 12:469–474

    Article  CAS  PubMed  Google Scholar 

  26. Mahalingam B, Louis JM, Reed CC, Adomat JM, Krouse J, Wang YF, Harrison RW, Weber IT (1999) Eur J Biochem 263:238–245

    Article  CAS  PubMed  Google Scholar 

  27. Harrison RW (1993) J Comp Chem 14:1112–1122

    CAS  Google Scholar 

  28. Weber IT, Harrison RW (1996) Protein Eng 9:679–690

    CAS  PubMed  Google Scholar 

  29. Weber IT, Harrison RW (1997) Protein Sci 6:2365–2374

    CAS  PubMed  Google Scholar 

  30. Bagossi P, Zahuczky G, Tozser J, Weber IT, Harrison RW (1999) J Mol Model 5:143–152

    Article  CAS  Google Scholar 

  31. Harrison RW (1999) J Math Chem 26:125–137

    Article  Google Scholar 

  32. Harrison RW (2003) Amortized fast multipole algorithm for molecular modeling. In: Dey PP, Amin MN, Gatton TM (eds) Proceedings of the International Conference on Computer Science and its Applications. pp 77–81

  33. Jones TA, Zou JY, Cowan SW, Kjeldgaard M (1991) Acta Crystallogr A47:110–119

    CAS  Google Scholar 

  34. Sayle RA, Milner-White JE (1995) Trends Biochem Sci 20:374–376

    Article  CAS  PubMed  Google Scholar 

  35. Zoete V, Michielin O, Karplus M (2002) J Mol Biol 315:21–52

    Article  CAS  PubMed  Google Scholar 

  36. Chen Z, Li Y, Chen E, Hall DL, Darke PL, Culberson C, Shafer JA, Kuo LC (1994) J Biol Chem 269:26344–26348

    CAS  PubMed  Google Scholar 

  37. Munshi S, Chen Z, Yan Y, Li Y, Olsen DB, Schock HB, Galvin BB, Dorsey B, Kuo LC (2000) Acta Crystallogr D56:381–388

    CAS  Google Scholar 

  38. Gustchina A, Weber IT (1990) FEBS Lett 269:269–272

    Article  CAS  PubMed  Google Scholar 

  39. Jenwitheesuk E, Samudrala R (2003) BMC Struct Biol 3:2

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Georgia Research Alliance and the United States Public Health Service Grants GM62920 and GM065762 (to I.T.W. and R.W.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene T. Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Weber, I.T. & Harrison, R.W. Molecular dynamics simulations of 14 HIV protease mutants in complexes with indinavir. J Mol Model 10, 373–381 (2004). https://doi.org/10.1007/s00894-004-0205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-004-0205-x

Keywords

Navigation