Skip to main content
Log in

Structure and dynamics of Candida rugosa lipase: the role of organic solvent

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The effect of organic solvent on the structure and dynamics of proteins was investigated by multiple molecular dynamics simulations (1 ns each) of Candida rugosa lipase in water and in carbon tetrachloride. The choice of solvent had only a minor structural effect. For both solvents the open and the closed conformation of the lipase were near to their experimental X-ray structures (Cα rms deviation 1–1.3 Å). However, the solvents had a highly specific effect on the flexibility of solvent-exposed side chains: polar side chains were more flexible in water, but less flexible in organic solvent. In contrast, hydrophobic residues were more flexible in organic solvent, but less flexible in water. As a major effect solvent changed the dynamics of the lid, a mobile element involved in activation of the lipase, which fluctuated as a rigid body about its average position. While in water the deviations were about 1.6 Å, organic solvent reduced flexibility to 0.9 Å. This increase rigidity was caused by two salt bridges (Lys85–Asp284, Lys75–Asp79) and a stable hydrogen bond (Lys75–Asn 292) in organic solvent. Thus, organic solvents stabilize the lid but render the side chains in the hydrophobic substrate-binding site more mobile.

Figure Superimposition of open (black, PDB entry 1CRL) and closed (gray, PDB entry 1TRH) conformers of C. rugosa lipase. The mobile lid is indicated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 a
Fig. 3a, b
Fig. 4a, b
Fig. 5a, b
Fig. 6a, b
Fig. 7a, b
Fig. 8a, b
Fig. 9a–c

Similar content being viewed by others

Abbreviations

CALB:

Candida antarctica lipase B

CRL:

Candida rugosa lipase

CCl4 :

carbon tetrachloride

MD:

molecular dynamics

PCL:

Pseudomonas cepacia lipase

Rmsd:

root-mean square deviation(s)

References

  1. Klibanov AM (2000) Trends Biotechnol 18:85–86

    Article  CAS  PubMed  Google Scholar 

  2. Klibanov AM (2001) Nature 409:241–246

    Article  CAS  PubMed  Google Scholar 

  3. Berglund P (2001) Biomol Eng 18:13–22

    Google Scholar 

  4. Derewenda U, Brzozowski AM, Lawson DM, Derewenda ZS (1992) Biochemistry 31:1532–1541

    CAS  PubMed  Google Scholar 

  5. Verger R (1997) TIBTECH 15:32–38

    Article  CAS  Google Scholar 

  6. Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT (1999) Biotechnol Appl Biochem 29:119–131

    CAS  PubMed  Google Scholar 

  7. Grochulski P, Li Y, Schrag JD, Bouthillier F, Smith P, Harrison D, Rubin B, Cygler M (1993) J Biol Chem 268:12843–12847

    CAS  PubMed  Google Scholar 

  8. Grochulski P, Li Y, Schrag JD, Cygler M (1994) Protein Sci 3:82–91

    CAS  PubMed  Google Scholar 

  9. Secundo F, Carrea G (2002) J Mol Catal B 19–20:93–102

    Google Scholar 

  10. Schmitke JL, Stern LJ, Klibanov AM (1997) Proc Natl Acad Sci USA 94:4250–4255

    Article  CAS  PubMed  Google Scholar 

  11. Hartsough DS, Merz KM (1992) J Am Chem Soc 114:10113–10116

    CAS  Google Scholar 

  12. Weber HK, Zuegg J, Faber K, Pleiss J (1997) J Mol Catal B 3:131–138

    Article  CAS  Google Scholar 

  13. Broos J, Visser AJWG, Engbersen JFJ, Verboom W, van Hoek A, Reinhoudt DN (1995) J Am Chem Soc 117:12657–12663

    CAS  Google Scholar 

  14. Case DA, Pearlman DA, Caldwell JW, Cheatham III TE, Wang J, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Tsui V, Gohlke H, Radmer RJ, Duan Y, Pitera J, Massova I, Seibel GL, Singh UC, Weiner PK, Kollman PA (2002) AMBER 7. University of California, San Francisco

  15. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  Google Scholar 

  16. Fox T, Kollman PA (1998) J Phys Chem B 102:8070–8079

    Article  CAS  Google Scholar 

  17. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341

    CAS  Google Scholar 

  18. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  19. Toba S, Hartsough DS, Merz KM (1996) J Am Chem Soc 118:6490–6498

    Article  CAS  Google Scholar 

  20. Hartsough DS, Merz KM (1993) J Am Chem Soc 115:6529–6537

    CAS  Google Scholar 

  21. Peters GH, van Aalten DM, Edholm O, Toxvaerd S, Bywater R (1996) Biophys J 71:2245–2255

    CAS  PubMed  Google Scholar 

  22. Mikhailov D, Linhardt RJ, Mayo KH (1997) Biochem J 328:51–61

    CAS  PubMed  Google Scholar 

  23. Sinha N, Kumar S, Nussinov R (2001) Structure 9:1165–1181

    Article  CAS  PubMed  Google Scholar 

  24. Barron LD, Hecht L, Wilson G (1997) Biochemistry 36:13143–13147

    Article  CAS  PubMed  Google Scholar 

  25. Brooks III CL, Karplus M (1989) J Mol Biol 208:159–181

    CAS  PubMed  Google Scholar 

  26. Bone S (1987) Biochim Biophys Acta 916:128–134

    Article  CAS  PubMed  Google Scholar 

  27. Soares CM, Teixeira VH, Baptista AM (2003) Biophys J 84:1628–1641

    CAS  PubMed  Google Scholar 

  28. Norin M, Haeffner F, Hult K, Edholm O (1994) Biophys J 67:548–559

    CAS  PubMed  Google Scholar 

  29. Mattos S, Ringe D (2001) Curr Opin Struct Biol 11:761–764

    Article  CAS  PubMed  Google Scholar 

  30. Peters GH, Bywater RP (2001) Biophys J 81:3052–3065

    CAS  PubMed  Google Scholar 

  31. Shen M, Freed KF (2002) Biophys J 82:1791–1808

    CAS  PubMed  Google Scholar 

  32. Norin M, Ohlsen O, Svendsen A, Edholm O, Hult K (1993) Protein Eng 6:855–863

    CAS  PubMed  Google Scholar 

  33. Holmquist M, Norin M, Hult K (1993) Lipids 28:721–726

    CAS  PubMed  Google Scholar 

  34. Brocca S, Persson M, Wehtje E, Adlercreutz P, Alberghina L, Lotti M (2000) Protein Sci 9:985–990

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Federal Ministry of Education and Research (project WTZ-MYS 02/001) and Malaysian Ministry of Science, Technology and Environment (project IRPA 09-02-04-001/BTK/TD/004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Pleiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tejo, B.A., Salleh, A.B. & Pleiss, J. Structure and dynamics of Candida rugosa lipase: the role of organic solvent. J Mol Model 10, 358–366 (2004). https://doi.org/10.1007/s00894-004-0203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-004-0203-z

Keywords

Navigation