Skip to main content
Log in

A computational approach to the synthesis of dirithromycin

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Dirithromycin is a macrolide antibiotic derived from erythromycin A. Dirithromycin is synthesized by the condensation of 9(S)-erythromycylamine with 2-(2-methoxyethoxy)-acetaldehyde. To gain insight into the synthesis, the condensation mechanism has been analyzed computationally by the AM1 method in the gas phase. First, the formation of the Schiff bases of dirithromycin and epidirithromycin from 9(S)-erythromycylamine and 2-(2-methoxyethoxy)-acetaldehyde were modeled. Then, the tautomerization of the Schiff bases to dirithromycin and epidirithromycin were considered. Finally, the epimerization of the Schiff base of epidirithromycin to the Schiff base of dirithromycin was investigated. Our results show that, even though carbinolamine forms faster for epidirithromycin than the corresponding structure for dirithromycin, dirithromycin is the major product of the synthesis.

Figure Synthesis of dirithromycin

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lingerfelt B, Champney WS (1999) J Pharm Biomed Anal 20:459–469

    Article  CAS  PubMed  Google Scholar 

  2. McGuire JM, Bunch PL, Anderson RC, Boaz HE, Flynn EH, Powell EH, Smith JW (1952) Antibiot Chemother 2:281–283

    CAS  Google Scholar 

  3. Corcoran JW (1984) In: Omura S (ed) Macrolide antibiotics: chemistry, biology and practice. Academic Press, Orlando, p 231

  4. Clark RF, Ma Z, Wang S, Griesgraber G, Tufano M, Yong H, Li L, Zhang X, Nilius AM, Chu DTW, Or YS (2000) Bioorg Med Chem Lett 10:815–819

    Article  CAS  PubMed  Google Scholar 

  5. Sigal MV, Wiley PF, Gerzon K, Flynn EH, Quarck UC, Weaver O (1956) J Am Chem Soc 78:388–395

    CAS  Google Scholar 

  6. Massey EH, Kitchell BS, Martin LD, Gerzon K (1974) J Med Chem 17:105–107

    CAS  PubMed  Google Scholar 

  7. Kirst HA, Wind JA, Leeds JP, Willard KE, Debono M, Bonjouklian R, Greene JM (1990) J Med Chem 33:3086–3094

    CAS  PubMed  Google Scholar 

  8. Gill JM, Johnson R (1994) Tetrahedron 50:3857–3868

    Article  Google Scholar 

  9. Luger P, Maier R (1979) J Crystallogr Mol Struct 9:329–338

    CAS  Google Scholar 

  10. Firl J, Prox A, Luger P, Maier R, Woitun E, Daneck K (1990) J Antibiot 43:1271–1277

    CAS  PubMed  Google Scholar 

  11. Duran D, Aviyente V, Baysal C (2002) J Chem Soc Perkin Trans II 670–675

  12. SPARTAN Version 5.1.3 (1998) Wavefunction Inc. 18401 Von Karman Ave. #370 Irvine, CA 92715

  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratman RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu C, Liashenko A, Piskorz P, Komaromi, I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.1. Gaussian, Pittsburgh, Pa.

  14. Becke AD (1993) J Chem Phys 98:1372–1377

    CAS  Google Scholar 

  15. Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  16. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  17. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728

    CAS  Google Scholar 

  18. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    CAS  Google Scholar 

  19. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    CAS  Google Scholar 

  20. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Google Scholar 

  21. Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404–417

    Article  CAS  Google Scholar 

  22. Gonzalez C, Schlegel HB (1989) J Phys Chem 90:2154–2161

    Google Scholar 

  23. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    CAS  Google Scholar 

  24. Hall NE, Smith BJ (1998) J Phys Chem A 102:4930–4938

    Article  CAS  Google Scholar 

  25. Neuvonen K, Fulop F, Neuvonen H, Koch A, Kleinpeter E, Pihlaja K (2001) J Org Chem 66:4132–4140

    Article  CAS  PubMed  Google Scholar 

  26. Bahmanyar S, Houk KN (2001) J Am Chem Soc 123:11273–11283

    Article  CAS  PubMed  Google Scholar 

  27. Duran D, Aviyente V, Baysal C (2003) J Comput-Aided Mol Des (accepted for publication, 2004)

Download references

Acknowledgements

The authors would like to thank Boğaziçi Araştırma Fonu project 01M101 and TUBITAK (The Scientific and Technical Research Council of Turkey) Münir Birsel Foundation for financial support. The authors would also like to thank Dr. Nurcan Tüzün, Aliment Özen and Cem Öztürk for their efforts to support this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktorya Aviyente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duran, D., Aviyente, V. & Baysal, C. A computational approach to the synthesis of dirithromycin. J Mol Model 10, 94–101 (2004). https://doi.org/10.1007/s00894-003-0172-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-003-0172-7

Keywords

Navigation