Skip to main content
Log in

Dynamical clustering of red blood cells in capillary vessels

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have modeled the dynamics of a 3-D system consisting of red blood cells (RBCs), plasma and capillary walls using a discrete-particle approach. The blood cells and capillary walls are composed of a mesh of particles interacting with harmonic forces between nearest neighbors. We employ classical mechanics to mimic the elastic properties of RBCs with a biconcave disk composed of a mesh of spring-like particles. The fluid particle method allows for modeling the plasma as a particle ensemble, where each particle represents a collective unit of fluid, which is defined by its mass, moment of inertia, translational and angular momenta. Realistic behavior of blood cells is modeled by considering RBCs and plasma flowing through capillaries of various shapes. Three types of vessels are employed: a pipe with a choking point, a curved vessel and bifurcating capillaries. There is a strong tendency to produce RBC clusters in capillaries. The choking points and other irregularities in geometry influence both the flow and RBC shapes, considerably increasing the clotting effect. We also discuss other clotting factors coming from the physical properties of blood, such as the viscosity of the plasma and the elasticity of the RBCs. Modeling has been carried out with adequate resolution by using 1 to 10 million particles. Discrete particle simulations open a new pathway for modeling the dynamics of complex, viscoelastic fluids at the microscale, where both liquid and solid phases are treated with discrete particles.

Figure A snapshot from fluid particle simulation of RBCs flowing along a curved capillary. The red color corresponds to the highest velocity. We can observe aggregation of RBCs at places with the most stagnant plasma flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.

Similar content being viewed by others

References

  1. Fung YC (1993) Biomechanics. Springer, Berlin Heidelberg New York, p 515

  2. de Roeck RM, Mackley MR (1997) The rheology and microstructure of equine blood. www.cheng.cam.ac.uk/~rmdr2/research.html

  3. Diamond SL (2001) Biophys J 80:1031–1032

    CAS  PubMed  Google Scholar 

  4. Kuharsky A, Fogelson A (2001) Biophys J 80:1050–1074

    CAS  PubMed  Google Scholar 

  5. Hitt DL, Lowe ML (1996) Spatial analysis of red blood cell aggregation for in vitro tube flow. In: Proceedings of the 6th World Congress on Microcirculation. Munich, Germany

  6. http://www.cardioliving.com/consumer/Circulatory/Clotting.shtm

  7. Hitt DL (1999) Simulations of observed power spectra of aggregating blood flow under videomicroscopy. In: Goel VK (ed) Proceedings of the 1999 ASME Bioengineering Conference, BED-vol 42. American Society of Mechanical Engineers, New York, pp 543–544

  8. Shrinivasan S, Peach JP, Hitt DL, Eggleton CD (2001) Rheology of mixtures of artificial blood and erythrocyte suspensions. In: Proceedings of the 2001 ASME Bioengineering Conference. American Society of Mechanical Engineers, New York

  9. Hitt DL, Lowe ML (1997) Confocal imaging and numerical simulations of converging flows in artificial microvessels. In: Gourley P (ed) Proceedings of Micro- and Nanofabricated Electro-Optical Mechanical Systems for Biomedical and Environmental Applications, vol 2978. Society of Photo-Optical Instrumentation Engineers (SPIE), Bellingham, WA, pp 145–154

  10. Hitt DL, Lowe ML, Tincher JR, Watters JM (1996) Microcirculation 3:259–263

    CAS  PubMed  Google Scholar 

  11. Hitt DL, Lowe ML (1999) ASME J Biomech Eng 121:170–177.

    CAS  Google Scholar 

  12. http://gened.emc.maricopa.edu/bio/bio181/BIOBK/BioBookcircSYS.html#The%20Heart, vol 2978

  13. http://www.lab.anhb.uwa.edu.au/mb140/CorePages/Vascular/Vascular.htm

  14. McDonnald DA (1974) Blood flow in arteries. Edward Arnold, London

  15. Botnar R, Rappitsch G, Scheidegger MB, Liepsch D, Perktold K, Boesiger PJ (2000) Biomechanics 33:137–144

    Article  CAS  Google Scholar 

  16. Acrivos A, Mauri R, Fan X (1993) Int J Multiphase Flow 19:797–802

    CAS  Google Scholar 

  17. http://kumc.edu/instruction/medicine/anatomy/histoweb/vascular/vascular.htm, item: Capillary

  18. Wolfram S (2002) A new kind of science. Wolfram Media, p 1263

  19. Dzwinel W, Alda W, Kitowski J, Yuen DA (2000) Mol Simulat 25:6361–6384

    Google Scholar 

  20. Dzwinel W (1997) Future Gener Comput Sys 12:1–19

    Google Scholar 

  21. Español P (1998) Phys Rev E 57:2930–2948

    Article  Google Scholar 

  22. Coveney PV, Novik KE (1996) Phys Rev E 54:5134–5141

    Article  CAS  Google Scholar 

  23. Groot RD, Warren PB (1997) J Chem Phys 107:4423–4435

    Article  CAS  Google Scholar 

  24. Clar AT, Lal M, Ruddock JN, Warren PB (2000) Langmuir 16:6342–6350

    Article  Google Scholar 

  25. Omelyan I (1998) Comput Phys 12:97–103

    Article  CAS  Google Scholar 

  26. Dzwinel W, Yuen DA (1999) Mol Simulat 22:369–395

    CAS  Google Scholar 

  27. Dzwinel W, Yuen DA (2001) Int J Mod Phys C 12:91–118

    Article  Google Scholar 

  28. Dzwinel W, Yuen DA, Boryczko K (2002) J Mol Model 8:33–45

    CAS  Google Scholar 

  29. Dzwinel W, Yuen DA (2002) J Colloid Interf Sci 247:463–480

    Article  CAS  Google Scholar 

  30. Quarteroni A, Tuveri M, Veneziani A (2000) Comput Vis Sci 2:163–197

    Article  Google Scholar 

  31. Leuprecht A, Perktold K, Prosi M, Berk T, Trubel W, Schima H (2002) J Biomech 35:225–36

    Article  PubMed  Google Scholar 

  32. Karner G, Perktold K (2000) J Biomech 33:709–15

    Article  CAS  PubMed  Google Scholar 

  33. Lafaurie B, Nardone C, Scardovelli R, Zaleski S, Zanetti G (1994) J Comput Phys 113:134–47

    Article  Google Scholar 

  34. Lelièvre JC, Bucherer C, Geiger S, Lacombe C, Vereycken V (1995) J Phys III France 5:1689–1706

    Google Scholar 

  35. Chopard B, Droz M (1998) Cellular automata modeling of physical systems. Cambridge University Press, Cambridge

  36. Revenga M, Zuniga I, Espanol P (1998) Int J Mod Phys C 9:1319–1328

    Google Scholar 

  37. Kasser U, Heimburge P, Walitza G (1989) Clin Hematology 9:307–312

    Google Scholar 

  38. Thurston GB (1996) Viscoelastic properties of blood and blood analogs. In: How TV (ed) Advances in hemodynamics and hemorheology. JAI Press, pp 1–30

  39. Hockney RW, Eastwood JW (1981) Computer simulation using particles. McGraw-Hill, New York

  40. Haile PM (1992) Molecular dynamics simulation. Wiley, New York

  41. Rapapport DC (1995) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

  42. Flekkoy E, Coveney PV, Fabritis G (2000) Phys Rev E 62:2140–2157

    Article  CAS  Google Scholar 

  43. Angenbaum JM, Peskin CS (1985) J Comput Phys 14:177–198

    Google Scholar 

  44. Hoogerbrugge PJ, Koelman JMVA (1992) Europhys Lett 19:155–160

    Google Scholar 

  45. Dzwinel W, Yuen DA (2000) J Colloid Interface Sci 225:179–190

    Article  CAS  PubMed  Google Scholar 

  46. Marsh C, Backx G, Ernst MH (1997) Phys Rev E 56:1976–1990

    Article  Google Scholar 

  47. de Groot SR, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland, Amsterdam

  48. Español P, Serrano M (1999) Phys Rev E 59:6340–7

    Article  Google Scholar 

  49. Dzwinel W, Yuen DA (2000) Int J Mod Phys C 11:1–25

    Article  Google Scholar 

  50. Groisman A, Steinberg V (2000) Nature 405:53–55

    Article  CAS  PubMed  Google Scholar 

  51. Verlet L, Phys Rev (1967) 159:98–102

    Google Scholar 

  52. Gibson J, Chen K, Chynoweth S (1999) Int J Mod Phys C 10:241–252

    Google Scholar 

  53. Vattulinen I, Kartunen M, Bsold B, Polson JM (2002) J Chem Phys 116:3967–3979

    Article  Google Scholar 

  54. Boryczko K, Dzwinel W, Yuen DA (2002) Concurrency Pract Ex 14:137–161

    Article  Google Scholar 

  55. Amira, v. 2.3 - Advanced 3D visualization and volume modeling (2001) http://www.amiravis.com

  56. Boryczko K, Dzwinel W, Yuen DA (2002) Concurrency Pract Ex 14 (in press)

  57. Dzwinel W, Boryczko K, Yuen DA (2002) J Colloid Interface Sci (in press)

  58. http://www.cis.tugraz.at/matd/work/blood.html

  59. Prabhu RD, Hitt DL, Eggleton CD (2001) Wavelet analysis of red blood cell aggregate structures. In: Proceedings of the 2001 ASME Bioengineering Conference. American Society of Mechanical Engineers, New York

  60. Serrano M, Español P (2001) Phys Rev E 64(4):4615/1–18

    Article  Google Scholar 

Download references

Acknowledgments

We thank Drs Bill Gleason and Dan Kroll for very useful discussions. Support for this work has come from the Polish Committee for Scientific Research (KBN) project 4 T11F 02022, the Complex Fluid Program of U.S. Department of Energy and from AGH Institute of Computer Science internal funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A.Yuen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boryczko, K., Dzwinel, W. & A.Yuen, D. Dynamical clustering of red blood cells in capillary vessels. J Mol Model 9, 16–33 (2003). https://doi.org/10.1007/s00894-002-0105-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-002-0105-x

Keywords

Navigation