Skip to main content

Advertisement

Log in

Comparative sequential morphological analyses during in vitro chondrogenesis and osteogenesis of mesenchymal stem cells embedded in collagen gels

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Chondrogenesis and osteogenesis during fetal development and postnatal growth constitute one of the most interesting and complicated subjects in biology. In this study, bone marrow mesenchymal stem cells (MSCs) were embedded in collagen gel, cultured in chondrogenic or osteogenic medium, and compared morphologically during chondrogenic and osteogenic differentiation sequentially by light and electron microscopy and immunohistochemical examination. Before induction, the MSCs were dispersed and round in the collagen gel. At day 1, MSCs with a large number of short processes produced extracellular fibers whose immunoreactivity was positive for collagen type I. At day 3, the shape of MSCs changed from round to elongated. Gap junctions positive for connexin 43 were also observed. At day 7, remarkable morphological differences were first observed during chondrogenesis and osteogenesis. The shape of MSCs changed to polygonal without cell processes during chondrogenesis, while MSCs remained spindle shaped with long processes during osteogenesis. Concurrently, collagen type II during chondrogenesis and osteocalcin during osteogenesis were first detected. At day 21, chondrogenesis and osteogenesis of the MSC/collagen composite further progressed, respectively. In vitro chondrogenesis and osteogenesis using an MSC/collagen composite clarified the morphological differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. DeLise AM, Fischer L, Tuan RS (2000) Cellular interactions and signaling in cartilage development. Osteoarthr Cartil 8:309–334

    Article  PubMed  CAS  Google Scholar 

  2. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  3. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  4. Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20:530–541

    Article  PubMed  Google Scholar 

  5. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartil 10:199–206

    Article  PubMed  CAS  Google Scholar 

  6. Sakaguchi Y, Sekiya I, Yagishita K, Ichinose S, Shinomiya K, Muneta T (2004) Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates. Blood 104:2728–2735

    Article  PubMed  CAS  Google Scholar 

  7. Awad HA, Boivin GP, Dressler MR, Smith FN, Young RG, Butler DL (2003) Repair of patellar tendon injuries using a cell–collagen composite. J Orthop Res 21:420–431

    Article  PubMed  CAS  Google Scholar 

  8. Koga H, Muneta T, Ju YJ, Nagase T, Nimura A, Mochizuki T, Ichinose S, von der Mark K, Sekiya I (2007) Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells 25:689–696

    Article  PubMed  CAS  Google Scholar 

  9. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272

    Article  PubMed  CAS  Google Scholar 

  10. Mackay AM, Beck SC, Murphy JM, Barry FP, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4:415–428

    Article  PubMed  CAS  Google Scholar 

  11. Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, Johnstone B (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg [Am] 80:1745–1757

    CAS  Google Scholar 

  12. Pereira RF, Halford KW, O’Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA 92:4857–4861

    Article  PubMed  CAS  Google Scholar 

  13. Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, Robey PG (1997) Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 12:1335–1347

    Article  PubMed  CAS  Google Scholar 

  14. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. Cell Biochem 64:278–294

    Article  CAS  Google Scholar 

  15. Agata H, Asahina I, Watanabe N, Ishii Y, Kubo N, Ohshima S, Yamazaki M, Tojo A, Kagami H (2010) Characteristic change and loss of in vivo osteogenic abilities of human bone marrow stromal cells during passage. Tissue Eng 16:663–673

    Article  CAS  Google Scholar 

  16. Yokoyama A, Sekiya I, Miyazaki K, Ichinose S, Hata Y, Muneta T (2005) In vitro cartilage formation of composites of synovium-derived mesenchymal stem cells with collagen gel. Cell Tissue Res 322:289–297

    Article  PubMed  CAS  Google Scholar 

  17. Tanaka N, Ichinose S, Adachi Y, Mimura M, Kimijima Y (2003) Ultrastructural analysis of salivary calculus in combination with X-ray microanalysis. Med Electron Microsc 36:120–126

    PubMed  Google Scholar 

  18. Ichinose S, Yamagata K, Sekiya I, Muneta T, Tagami M (2005) Detailed examination of cartilage formation and endochondral ossification using human mesenchymal stem cells. Clin Exp Pharmacol Physiol 32:561–570

    Article  PubMed  CAS  Google Scholar 

  19. Ichinose S, Muneta T, Sekiya I, Itoh S, Aoki H, Tagami M (2003) The study of metal ion release and cytotoxicity in Co–Cr–Mo and Ti–Al–V alloy in total knee prosthesis: scanning electron microscopic observation. J Mater Sci Mater Med 14:79–86

    Article  PubMed  CAS  Google Scholar 

  20. DeLise AM, Tuan RS (2002) Alterations in the spatiotemporal expression pattern and function of N-cadherin inhibit cellular condensation and chondrogenesis of limb mesenchymal cells in vitro. J Cell Biochem 87:342–359

    Article  PubMed  CAS  Google Scholar 

  21. Cho SH, Oh CD, Kim SJ, Kim IC, Chun JS (2003) Retinoic acid inhibits chondrogenesis of mesenchymal cells by sustaining expression of N-cadherin and its associated proteins. J Cell Biochem 89:837–847

    Article  PubMed  CAS  Google Scholar 

  22. Sekiya I, Vuoristo JT, Larson BL, Prockop DJ (2002) In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci USA 99:4397–4402

    Article  PubMed  CAS  Google Scholar 

  23. Ichinose S, Tagami M, Muneta T, Sekiya I (2005) Morphological examination during in vitro cartilage formation by human mesenchymal stem cells. Cell Tissue Res 322:217–226

    Article  PubMed  Google Scholar 

  24. Donzelli E, Salvadè A, Mimo P, Viganò M, Morrone M, Papagna R, Carini Zaopo FA, Miloso M, Baldoni M, Tredici G (2007) Mesenchymal stem cells cultured on a collagen scaffold: in vitro osteogenic differentiation. Arch Oral Biol 52:64–73

    Article  PubMed  CAS  Google Scholar 

  25. Yoneno K, Ohno S, Tanimoto K, Honda K, Tanaka N, Doi T, Kawata T, Tanaka E, Kapila S, Tanne K (2005) Multidifferentiation potential of mesenchymal stem cells in three-dimensional collagen gel cultures. J Biomed Mater Res A 75:733–741

    PubMed  Google Scholar 

  26. Stains JP, Civitelli R (2005) Cell-to-cell interactions in bone. Biochem Biophys Res Commun 328:721–727

    Article  PubMed  CAS  Google Scholar 

  27. Schiller PC, D’Ippolito G, Balkan W, Roos BA, Howard GA (2001) Gap junctional communication is required for the maturation process of osteoblastic cells in culture. Bone (NY) 28:362–369

    Article  CAS  Google Scholar 

  28. Lecanda F, Towler DA, Ziambaras K, Cheng SL, Koval M, Steinberg TH, Civitelli R (1998) Gap junctional communication modulates gene expression in osteoblastic cells. Mol Biol Cell 9:2249–2258

    PubMed  CAS  Google Scholar 

  29. Li Z, Zhou Z, Yellowley CE, Donahue HJ (1999) Inhibiting gap junctional intercellular communication alters expression of differentiation markers in osteoblastic cells. Bone (NY) 25:661–666

    Article  CAS  Google Scholar 

  30. Vivatbutsiri P, Ichinose S, Hytönen M, Sainio K, Eto K, Iseki S (2008) Impaired meningeal development in association with apical expansion of calvarial bone osteogenesis in the Foxc1 mutant. J Anat 212:603–611

    Article  PubMed  CAS  Google Scholar 

  31. Ichinose S, Muneta T, Koga H, Segawa Y, Tagami M, Tsuji K, Sekiya I (2010) Morphological differences during in vitro chondrogenesis of bone marrow-, synovium-MSCs, and chondrocytes. Lab Invest 90:210–221

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kenjiro Wake and Hisae Hori for valuable discussions, Akiko Yokoyama for help with in vitro chondrogenesis of MSCs, and Yuko Kawamura for preparing the figures. This study was supported by grants from the Japan Society for the Promotion of Science (19500403) to Shizuko Ichinose, from the Japanese Ministry of Education Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases to Takeshi Muneta, and from the Health and Labor Sciences Research Grant, Research on Regenerative Medicine for Clinical Application to Ichiro Sekiya.

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shizuko Ichinose or Ichiro Sekiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichinose, S., Tagami, M., Muneta, T. et al. Comparative sequential morphological analyses during in vitro chondrogenesis and osteogenesis of mesenchymal stem cells embedded in collagen gels. Med Mol Morphol 46, 24–33 (2013). https://doi.org/10.1007/s00795-012-0005-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-012-0005-9

Keywords

Navigation