Skip to main content

Advertisement

Log in

Basic study of retinal stem/progenitor cell separation from mouse iris tissue

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

We described the possibility of retinal regeneration using a novel and efficient technique for culturing and separating retinal stem/progenitor cells from iris tissue. Immunohistochemical staining of adult agouti mouse iris tissue revealed the presence of nestin/low-affinity neurotrophin receptor p75 (p75NTR)-positive cells on the endothelium camerae anterioris side. Cultured mouse iris-derived cells contained little or no melanin and were found to be positive for nestin. Most nestin-positive cells were analyzed for the coexpression of p75NTR as a cell membrane protein. When the p75NTR was used as a marker to sort the cells, we obtained a dense population of nestin-positive cells. Furthermore, the nestin/p75NTR-positive cells were able to differentiate into neural retina cells. Thus, this culture and separation technique is useful for obtaining retinal stem/progenitor cells from adult mouse iris tissue and for the efficient production of neural retina cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reh TA, Tully T (1986) Regulation of tyrosine hydroxylasecontaining amacrine cell number in larval frog retina. Dev Biol 114:463–469

    Article  CAS  PubMed  Google Scholar 

  2. Reh TA, Levine EM (1998) Multipotential stem cells and progenitors in the vertebrate retina. J Neurobiol 36:206–220

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi M, Palmer TD, Takahashi J, Gage FH (1998) Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina. Mol Cell Neurosci 12:340–348

    Article  CAS  PubMed  Google Scholar 

  4. Nishida A, Takahashi M, Tanihara H, Nakano I, Takahashi JB, Mizoguchi A, Ide C, Honda Y (2000) Incorporation and differentiation of hippocampus-derived neural stem cells transplanted in injured adult rat retina. Invest Ophthalmol Vis Sci 41:4268–4274

    CAS  PubMed  Google Scholar 

  5. Kurimoto Y, Shibuki H, Kaneko Y, Ichikawa M, Kurokawa T, Takahashi M, Yoshimura N (2001) Transplantation of adult rat hippocampus-derived neural stem cells into retina injured by transient ischemia. Neurosci Lett 306:57–60

    Article  CAS  PubMed  Google Scholar 

  6. Akita J, Takahashi M, Hojo M, Nishida A, Haruta M, Honda Y (2002) Neuronal differentiation of adult rat hippocampus-derived neural stem cells transplanted into embryonic rat explanted retinas with retinoic acid pretreatment. Brain Res 954:286–293

    Article  CAS  PubMed  Google Scholar 

  7. Suzuki T, Ooto S, Akagi T, Amemiya K, Igarashi R, Mizushima Y, Takahashi M (2003) Effects of prolonged delivery of brain-derived neurotrophic factor on the fate of neural stem cells transplanted into the developing rat retina. Biochem Biophys Res Commun 309:843–847

    Article  CAS  PubMed  Google Scholar 

  8. Turner DL, Cepko CL (1987) A common progenitor for neurons and glia persists in rat retina late in development. Nature (Lond) 328:131–136

    Article  CAS  Google Scholar 

  9. Ahmad I, Dooley CM, Thoreson WB, Rogers JA, Afiat S (1999) In vitro analysis of a mammalian retinal progenitor that gives rise to neurons and glia. Brain Res 831:1–10

    Article  CAS  PubMed  Google Scholar 

  10. Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, van der Kooy D (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–2036

    Article  CAS  PubMed  Google Scholar 

  11. Haruta M, Kosaka M, Kanegae Y, Saito I, Inoue T, Kageyama R, Nishida A, Honda Y, Takahashi M (2001) Induction of photoreceptor-specific phenotypes in adult mammalian iris tissue. Nat Neurosci 4:1163–1164

    Article  CAS  PubMed  Google Scholar 

  12. Yamamoto N, Marunouchi T (2005) Studies for the regenerative therapy of neural retinal cells (in Japanese). Tissue Cult Res Commun 24:101–106

    Google Scholar 

  13. Sun G, Asami M, Ohta H, Kosaka J, Kosaka M (2006) Retinal stem/progenitor properties of iris pigment epithelial cells. Dev Biol 289:243–252

    Article  CAS  PubMed  Google Scholar 

  14. Yamamoto N (2009) Regenerative medicine using the tissue stem cell: separation and differentiation of tissue stem cell (in Japanese). BullFujita-Gakuen Med Soc 33:11–21

    Google Scholar 

  15. Yamamoto N, Majima K, Marunouchi T (2008) A study of the proliferating activity in lens epithelium and the identification of tissue-type stem cells. Med Mol Morphol 41:83–91

    Article  PubMed  Google Scholar 

  16. Asami M, Sun G, Yamaguchi M, Kosaka M (2007) Multipotent cells from mammalian iris pigment epithelium. Dev Biol 304:433–446

    Article  CAS  PubMed  Google Scholar 

  17. Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60: 585–595

    Article  CAS  PubMed  Google Scholar 

  18. Kunimura C, Kikuchi K, Ahmed N, Shimizu A, Yasumoto S (1998) Telomerase activity in a specific cell subset co-expressing integrin beta1/EGFR but not p75NGFR/bcl2/integrin beta4 in normal human epithelial cells. Oncogene 17:187–197

    Article  CAS  PubMed  Google Scholar 

  19. Hahn CG, Han LY, Rawson NE, Mirza N, Borgmann-Winter K, Lenox RH, Arnold SE (2005) In vivo and in vitro neurogenesis in human olfactory epithelium. J Comp Neurol 483:154–163

    Article  PubMed  Google Scholar 

  20. Yamamoto N, Akamatsu H, Hasegawa S, Yamada T, Nakata S, Ohkuma M, Miyachi E, Marunouchi T, Matsunaga K (2007) Isolation of multipotent stem cells from mouse adipose tissue. Dermatol Sci 48:43–52

    Article  CAS  Google Scholar 

  21. Okumura T, Shimada Y, Imamura M, Yasumoto S (2003) Neurotrophin receptor p75 (NTR) characterizes human esophageal keratinocyte stem cells in vitro. Oncogene 22:4017–4026

    Article  CAS  PubMed  Google Scholar 

  22. Eguchi G, Abe SI, Watanabe K (1974) Differentiation of lens-like structures from newt iris epithelial cells in vitro. Proc Natl Acad Sci U S A 71:5052–5056

    Article  CAS  PubMed  Google Scholar 

  23. Kodama R, Eguchi G (1995) From lens regeneration in the newt to in-vitro transdifferentiation of vertebrate pigmented epithelial cells. Semin Cell Biol 6:143–149

    Article  CAS  PubMed  Google Scholar 

  24. Kosaka M, Kodama R, Eguchi G (1998) In vitro culture system for iris-pigmented epithelial cells for molecular analysis of transdifferentiation. Exp Cell Res 245:245–251

    Article  CAS  PubMed  Google Scholar 

  25. Furukawa T, Morrow EM, Cepko CL (1997) Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91:531–541

    Article  CAS  PubMed  Google Scholar 

  26. Chen S, Wang QL, Nie Z, Sun H, Lennon G, Copeland NG, Gilbert DJ, Jenkins NA, Zack DJ (1997) Crx, a novel Otx-like pairedhomeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19:1017–1030

    Article  CAS  PubMed  Google Scholar 

  27. Freund CL, Gregory-Evans CY, Furukawa T, Papaioannou M, Looser J, Ploder L, Bellingham J, Ng D, Herbrick JA, Duncan A, Scherer SW, Tsui LC, Loutradis-Anagnostou A, Jacobson SG, Cepko CL, Bhattacharya SS, McInnes RR (1997) Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell 91:543–553

    Article  CAS  PubMed  Google Scholar 

  28. Okano H (2002) Neural stem cells: progression of basic research and perspective for clinical application. Keio J Med 51:115–128

    CAS  PubMed  Google Scholar 

  29. Hockfield S, McKay RD (1985) Identification of major cell classes in the developing mammalian nervous system. J Neurosci 5:3310–3328

    CAS  PubMed  Google Scholar 

  30. Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60: 585–595

    Article  CAS  PubMed  Google Scholar 

  31. Johansson A, Lundborg M, Sköld CM, Lundahl J, Tornling G, Eklund A, Camner P (1997) Functional morphological and phenotypical differences between rat alveolar and interstitial macrophages. Am J Res Cell Mol Biol 16:582–588

    CAS  Google Scholar 

  32. Hollowell JP, Villadiego A, Rich KM (1990) Sciatic nerve regeneration across gaps within silicone chambers: long-term effects of NGF and consideration of axonal branching. Exp Neurol 110:45–51

    Article  CAS  PubMed  Google Scholar 

  33. Levi-Montalcini R, Booker B (1960) Destruction of the sympathetic ganglia in mammals by an antiserum to a nerve growth protein. Proc Natl Acad Sci U S A 46:384–391

    Article  CAS  PubMed  Google Scholar 

  34. Bothwell M (1995) Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci 18:223–253

    Article  CAS  PubMed  Google Scholar 

  35. Bibel M, Hoppe E, Barde YA (1999) Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J 18:616–622

    Article  CAS  PubMed  Google Scholar 

  36. Dechant G (2001) Molecular interactions between neurotrophin receptors. Cell Tissue Res 305:229–238

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, N., Tanikawa, A. & Horiguchi, M. Basic study of retinal stem/progenitor cell separation from mouse iris tissue. Med Mol Morphol 43, 139–144 (2010). https://doi.org/10.1007/s00795-009-0486-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-009-0486-3

Key words

Navigation