Skip to main content

Advertisement

Log in

Expression profiling of micro-RNAs in human esophageal squamous cell carcinoma using RT-PCR

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

To develop novel therapeutic and diagnostic methods for esophageal cancer, it is important to understand the precise biological mechanism. Micro-RNAs (miRNAs) seem to be crucial factors in diverse regulation pathways. In this study, we analyzed the expression of mature miRNAs in esophageal squamous cell carcinoma (ESCC). The expression of 73 miRNAs was quantified by qRT-PCR in 30 primary ESCC specimens. We examined the correlation between miRNA expressions and the clinicopathological factors and prognosis of ESCC. The Kaplan-Meier survival curves showed that the high expression levels of 6 of the 72 miRNAs correlated with significantly lower patient survival rates. The overexpression of miR-129 was identified as a significant and independent prognostic factor (P = 0.031) in surgically treated ESCC patients. The hazard ratio for the prediction of early death was 18.11 for high versus low expression levels of miR-129. Similar results were obtained from an analysis performed on an additional 19 patients (test cohort) (P = 0.0057, for training cohort; P = 0.011, for test cohort; log-rank test). This experiment supports the notion that the high miR-129 expression levels, as observed in this study, might play a important role in the development of esophageal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Isono K, Sato H, Nakayama K (1991) Results of a nationwide study on the three-field lymph node dissection of esophageal cancer. Oncology 48:411–420

    Article  PubMed  CAS  Google Scholar 

  2. Pisani P, Parkin DM, Bray F, Ferlay J (1999) Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer 83:18–29

    Article  PubMed  CAS  Google Scholar 

  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  4. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385

    Article  PubMed  CAS  Google Scholar 

  5. Ambros V (2004) The functions of animal microRNAs. Nature (Lond) 431:350–355

    Article  CAS  Google Scholar 

  6. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature (Lond) 435:839–843

    Article  CAS  Google Scholar 

  7. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    Article  PubMed  CAS  Google Scholar 

  8. Esquela-Kerscher A, Slack FJ (2006) Oncomirs: microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  9. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198

    Article  PubMed  CAS  Google Scholar 

  10. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261

    Article  PubMed  CAS  Google Scholar 

  11. Sobin LH (2003) TNM, sixth edition (2003): new developments in general concepts and rules. Semin Surg Oncol 21:19–22

    Article  PubMed  Google Scholar 

  12. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  13. Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A 101:9740–9744

    Article  PubMed  CAS  Google Scholar 

  14. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature (Lond) 433:769–773

    Article  CAS  Google Scholar 

  15. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature (Lond) 435:834–838

    Article  CAS  Google Scholar 

  16. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  CAS  Google Scholar 

  17. Tang F, Hajkova P, Barton SC, O’Carroll D, Lee C, Lao K, Surani MA (2006) 220-plex microRNA expression profile of a single cell. Nat Protocols 1:1154–1159

    Article  CAS  Google Scholar 

  18. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature (Lond) 447:1130–1134

    Article  CAS  Google Scholar 

  19. Lam CT, Tang CM, Lau KW, Lung ML (2002) Loss of heterozygosity on chromosome 11 in esophageal squamous cell carcinomas. Cancer Lett 178:75–81

    Article  PubMed  CAS  Google Scholar 

  20. Hoshino Y, Horikawa I, Oshimura M, Yuasa Y (1991) Normal human chromosome 5, on which a familial adenomatous polyposis gene is located, has tumor suppressive activity. Biochem Biophys Res Commun 174:298–304

    Article  PubMed  CAS  Google Scholar 

  21. Hanson CA, Miller JR (2005) Non-traditional roles for the adenomatous polyposis coli (APC) tumor suppressor protein. Gene (Amst) 361:1–12

    CAS  Google Scholar 

  22. Senda T, Iizuka-Kogo A, Onouchi T, Shimomura A (2007) Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Med Mol Morphol 40:68–81

    Article  PubMed  Google Scholar 

  23. Okamoto M, Sato C, Kohno Y, Mori T, Iwama T, Tonomura A, Miki Y, Utsunomiya J, Nakamura Y, White R (1990) Molecular nature of chromosome 5q loss in colorectal tumors and desmoids from patients with familial adenomatous polyposis. Hum Genet 85:595–599

    Article  PubMed  CAS  Google Scholar 

  24. Sugito N, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Kurehara H, Ando T, Mori R, Takashima N, Ogawa R, Fujii Y (2006) RNASEN regulates cell proliferation and affects survival in esophageal cancer patients. Clin Cancer Res 12:7322–7328

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Ishiguro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, R., Ishiguro, H., Kuwabara, Y. et al. Expression profiling of micro-RNAs in human esophageal squamous cell carcinoma using RT-PCR. Med Mol Morphol 42, 102–109 (2009). https://doi.org/10.1007/s00795-009-0443-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-009-0443-1

Key words

Navigation