Skip to main content
Log in

Characterization of a cold-adapted DNA photolyase from C. psychrerythraea 34H

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The phrB gene encoding a putative cold-adapted DNA photolyase was cloned from the bacterial genomic DNA of Colwellia psychrerythraea 34H, a psychrophilic bacterium. Recombinant DNA photolyase, rCpPL, was overexpressed and purified from three different vectors. rCpPL binds its DNA substrate by flipping a cyclobutane pyrimidine dimer (CPD) into its active site and repairs CPD-containing DNA in vitro. rCpPL contains one catalytic flavin adenine dinucleotide (FAD) cofactor, but displays promiscuity in cofactor binding, in which either a flavin mononucleotide (FMN) or a methenyltetrahydrofolate (MTHF) molecule is bound as an antenna molecule and found in sub-stoichiometric amounts. The UV/Vis spectrum of oxidized rCpPL shows that the FADOX absorption maximum is the most red-shifted reported for a PL, suggesting a unique cavity electrostatic environment. Modest FAD vibronic structure suggests that the binding pocket is more flexible than warmer PLs, corroborating the hypothesis that psychrophilic proteins must be highly flexible to function at low temperatures. Fluorescence excitation data show that the freshly purified flavin cofactor is in its fully reduced state (FADH¯). A homology analysis of PL protein structures spanning 70 °C in growth temperature supports the data that the structure of CpPL is quite different from its warmer cousins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albarracin VH et al (2014) First characterisation of a CPD-class I photolyase from a UV-resistant extremophile isolated from high-altitude Andean Lakes. Photochem Photobiol Sci 13:739–750. doi:10.1039/c3pp50399b

    Article  CAS  PubMed  Google Scholar 

  • Altermark B, Niiranen L, Willassen NP, Smalas AO, Moe E (2007) Comparative studies of endonuclease I from cold-adapted Vibrio salmonicida and mesophilic Vibrio cholerae. FEBS J 274:252–263. doi:10.1111/j.1742-4658.2006.05580.x

    Article  CAS  PubMed  Google Scholar 

  • Anderson S, Dragnea V, Masuda S, Ybe J, Moffat K, Bauer C (2005) Structure of a novel photoreceptor, the BLUF domain of AppA from Rhodobacter sphaeroides. Biochemistry 44:7998–8005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artimo P et al (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603. doi:10.1093/nar/gks400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubert C, Mathis P, Eker AP, Brettel K (1999) Intraprotein electron transfer between tyrosine and tryptophan in DNA photolyase from Anacystis nidulans. Proc Natl Acad Sci USA 96:5423–5427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae E, Phillips GN (2004) Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. J Biol Chem 279:28202–28208. doi:10.1074/jbc.M401865200

    Article  CAS  PubMed  Google Scholar 

  • Benkert P, Kunzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37:W510–W514. doi:10.1093/nar/gkp322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350. doi:10.1093/bioinformatics/btq662

    Article  CAS  PubMed  Google Scholar 

  • Berg BJV, Sancar GB (1998) Evidence for dinucleotide flipping by DNA photolyase. J Biol Chem 273:20276–20284

    Article  Google Scholar 

  • Biernat MA, Eker APM, van Oers MM, Vlak JM, van der Horst GTJ, Chaves I (2012) A baculovirus photolyase with DNA repair activity and circadian clock regulatory function. J Biol Rhythms 27:3–11. doi:10.1177/0748730411429665

    Article  CAS  PubMed  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500. doi:10.1093/nar/gkg500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christine KS, MacFarlane AW IV, Yang K, Stanley RJ (2002) Cyclobutylpyrimidine dimer base flipping by DNA photolyase. J Biol Chem 277:38339–38344

    Article  CAS  PubMed  Google Scholar 

  • Cipolla A, Delbrassine F, Da Lage JL, Feller G (2012) Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases. Biochimie 94:1943–1950. doi:10.1016/j.biochi.2012.05.013

    Article  CAS  PubMed  Google Scholar 

  • Clivio P, Fourrey J-L (1996) (6-4) Photoproduct DNA photolyase mechanistic studies using s5-(6-4) photoproducts. Chem Commun 18:2203–2204

    Article  Google Scholar 

  • Costantini S, Colonna G, Facchiano AM (2008) ESBRI: a web server for evaluating salt bridges in proteins. Bioinformation 3:137–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118. doi:10.1093/nar/gkl282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eker APM, Yajima H, Yasui A (1994) DNA photolyase from the fungus Neurospora crassa. Purification, characterization and comparison with other photolyases. Photochem Photobiol 60:125–133

    Article  CAS  PubMed  Google Scholar 

  • Fujihashi M et al (2007) Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: implication of a novel light-harvesting cofactor. J Mol Biol 365:903–910

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788. doi:10.1093/nar/gkg563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauden M, van Stokkum IHM, Key JM, Luehrs DC, van Grondelle R, Hagemann P, Kennis TM (2006) Hydrogen-bond switching through a radical pair mechanism in a flavin-binding photoreceptor. Proc Natl Acad Sci USA 103:10895–10900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerday C et al (1997) Psychrophilic enzymes: a thermodynamic challenge. Biochim Biophys Acta (Protein Struct Mol Enzymol) 1342:119–131. doi:10.1016/s0167-4838(97)00093-9

    Article  CAS  Google Scholar 

  • Gindt YM, Edani BH, Olejnikova A, Roberts AN, Munshi S, Stanley RJ (2016) The missing electrostatic interactions between DNA substrate and Sulfolobus solfataricus DNA photolyase: what is the role of charged amino acids in thermophilic DNA binding proteins? J Phys Chem B 120:10234–10242. doi:10.1021/acs.jpcb.6b07201

    Article  CAS  PubMed  Google Scholar 

  • Hamm-Alvarez S, Sancar A, Rajagopalan KV (1989) Role of enzyme-bound 5,10-methenyltetrahydropteroylpolyglutamate in catalysis by Escherichia coli DNA photolyase. J Biol Chem 264:9649–9656

    CAS  PubMed  Google Scholar 

  • Hopkins N, Stanley RJ (2003) Measurement of the electronic properties of the flavoprotein old yellow enzyme (OYE) and the OYE:p-Cl phenol charge-transfer complex using stark spectroscopy. Biochemistry 42:991–999

    Article  CAS  PubMed  Google Scholar 

  • Hoyoux A et al (2004) Extreme catalysts from low-temperature environments. J Biosci Bioeng 98:317–330. doi:10.1263/jbb.98.317

    Article  CAS  PubMed  Google Scholar 

  • Huang YH, Baxter R, Smith BS, Partch CL, Colbert CL, Deisenhofer J (2006) Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity. Proc Natl Acad Sci USA 103:17701–17706. doi:10.1073/pnas.0608554103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam SDM, Penzkofer A, Hegemann P (2003a) Quantum yield of triplet formation of riboflavin in aqueous solution and of flavin mononucleotide bound to the LOV1 domain of Photl from Chlamydomonas reinhardtii. Chem Phys 291:97–114. doi:10.1016/s0301-0104(03)00187-3

    Article  CAS  Google Scholar 

  • Islam SDM, Susdorf T, Penzkofer A, Hegemann P (2003b) Fluorescence quenching of flavin adenine dinucleotide in aqueous solution by pH dependent isomerisation and photo-induced electron transfer. Chem Phys 295:137–149. doi:10.1016/j.chemphys.2003.08.013

    Article  CAS  Google Scholar 

  • Johnson JL, Hamm-Alvarez S, Payne G, Sancar GB, Rajagopalan KV, Sancar A (1988) Identification of the second chromophore of Escherichia coli and yeast DNA photolyases as 5,10-methenyltetrahydrofolate. Proc Natl Acad Sci USA 85:2046–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorns MS, Wang B, Jordan SP, Chanderkar LP (1990) Chromophore function and interaction in Escherichia coli DNA photolyase: reconstitution of the apoenzyme with pterin and/or flavin derivatives. Biochemistry 29:552–561

    Article  CAS  PubMed  Google Scholar 

  • Kao Y-T, Saxena C, Wang L, Sancar A, Zhong D (2005) Direct observation of thymine dimer repair in DNA by photolyase. Proc Natl Acad Sci USA 102:16128–16132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato R, Hasegawa K, Hidaka Y, Kuramitsu S, Hoshino T (1997) Characterization of a thermostable DNA photolyase from an extremely thermophilic bacterium, Thermus thermophilus HB27J. Bacteriology 179:6499–6503

    Article  CAS  Google Scholar 

  • Kay CWM, Bacher A, Fischer M, Richter G, Schleicher E, Weber S (2006) Blue light-initiated DNA repair by photolyase comprehensive series. Photochem Photobiol Sci 6:151–182

    CAS  Google Scholar 

  • Kiener A, Husain I, Sancar A, Walsh C (1989) Purification and properties of Methanobacterium thermoautotrophicum DNA photolyase. J Biol Chem 264:13880–13887

    CAS  PubMed  Google Scholar 

  • Kim ST, Heelis PF, Okamura T, Hirata Y, Mataga N, Sancar A (1991) Determination of rates and yields of interchromophore (folate → flavin) energy transfer and intermolecular (flavin → DNA) electron transfer in Escherichia coli photolyase by time-resolved fluorescence and absorption spectroscopy. Biochemistry 30:11262–11270

    Article  CAS  PubMed  Google Scholar 

  • Kim S-T, Malhotra K, Ryo H, Sancar A, Todo T (1996) Purification and characterization of Drosophila melanogaster photolyase. Mutat Res 363:97–104

    Article  PubMed  Google Scholar 

  • Kim SY, Hwang KY, Kim SH, Sung HC, Han YS, Cho YJ (1999) Structural basis for cold adaptation—sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum. J Biol Chem 274:11761–11767. doi:10.1074/jbc.274.17.11761

    Article  CAS  PubMed  Google Scholar 

  • Kiontke S, Geisselbrecht Y, Pokorny R, Carell T, Batschauer A, Essen LO (2011) Crystal structures of an archaeal class II DNA photolyase and its complex with UV-damaged duplex DNA. EMBO J 30:4437–4449. doi:10.1038/emboj.2011.313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klar T, Kaiser G, Hennecke U, Carell T, Batschauer A, Essen L-O (2006) Natural and non-natural antenna chromophores in the DNA photolyase from Thermus thermophilus. ChemBioChem 7:1798–1806

    Article  CAS  PubMed  Google Scholar 

  • Kodali G, Siddiqui SU, Stanley RJ (2009) Charge redistribution in oxidized and semiquinone E. coli DNA photolyase upon photoexcitation: stark spectroscopy reveals a rationale for the position of Trp382. J Am Chem Soc 131:4795–4807

    Article  CAS  PubMed  Google Scholar 

  • Komori H, Masui R, Kuramitsu S, Yokoyama S, Shibata T, Inoue Y, Miki K (2002) Crystal structure of thermostable DNA photolyase: pyrimidine-dimer recognition mechanism. Proc Natl Acad Sci USA 98:13560–13565

    Article  Google Scholar 

  • Kumar S, Nussinov R (2004) Different roles of electrostatics in heat and in cold: adaptation by citrate synthase. ChemBioChem 5:280–290. doi:10.1002/cbic.200300627

    Article  CAS  PubMed  Google Scholar 

  • Langenbacher T, Zhao X, Bieser G, Heelis PF, Sancar A, Michel-Beyerle ME (1997) Substrate and temperature dependence of DNA photolyase repair activity examined with ultrafast spectroscopy. J Am Chem Soc 119:10532–10536

    Article  CAS  Google Scholar 

  • Leiros HKS, Pey AL, Innselset M, Moe E, Leiros I, Steen IH, Martinez A (2007) Structure of phenylalanine hydroxylase from Colwellia psychrerythraea 34H, a monomeric cold active enzyme with local flexibility around the active site and high overall stability. J Biol Chem 282:21973–21986. doi:10.1074/jbc.M610174200

    Article  CAS  PubMed  Google Scholar 

  • Light DR, Walsh C, Marletta MA (1980) Analytical and preparative high-performance liquid chromatography separation of flavin and flavin analog coenzymes. Anal Biochem 109:87–93

    Article  CAS  PubMed  Google Scholar 

  • Lipman RSA, Jorns MS (1992) Direct evidence for singlet-singlet energy transfer in Escherichia coli DNA photolyase. Biochemistry 31:786–791

    Article  CAS  PubMed  Google Scholar 

  • Liptay W (1969) Electrochromism and Solvatochromism. Angew Chem Int Ed 8:177–188

    Article  CAS  Google Scholar 

  • Liu Z et al (2011) Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase. Proc Natl Acad Sci. doi:10.1073/pnas.1110927108

    Google Scholar 

  • Losi A, Gartner W (2012) The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. In: Merchant SS (ed) Annual review of plant biology, vol 63. Annual Reviews, Palo Alto, CA, USA, pp 49–72

  • MacFarlane AW IV, Stanley RJ (2001) Evidence of powerful substrate electric fields in DNA photolyase: implications for thymidine dimer repair. Biochemistry 40:15203–15214

    Article  CAS  PubMed  Google Scholar 

  • MacFarlane AW IV, Stanley RJ (2003) Cis-syn thymidine dimer repair by DNA photolyase in real time. Biochemistry 42:8558–8568

    Article  CAS  PubMed  Google Scholar 

  • Mees A, Klar T, Gnau P, Hennecke U, Eker APM, Carell T, Essen L-O (2004) Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science 306:1789–1793

    Article  CAS  PubMed  Google Scholar 

  • Methe BA et al (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao LL et al (2016) Molecular structural basis for the cold adaptedness of the psychrophilic beta-glucosidase BglU in Micrococcus antarcticus. Appl Environ Microbiol 82:2021–2030. doi:10.1128/aem.03158-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimoto E, Aso Y, Koga T, Yamashita S (2006) Thermal unfolding process of dihydrolipoamide dehydrogenase studied by fluorescence spectroscopy. J Biochem 140:349–357. doi:10.1093/jb/mvj156

    Article  CAS  PubMed  Google Scholar 

  • Ozturk N, Selby CP, Zhong D, Sancar A (2014) Mechanism of photosignaling by Drosophila cryptochrome role of the redox status of the flavin chromophore. J Biol Chem 289:4634–4642. doi:10.1074/jbc.M113.542498

    Article  CAS  PubMed  Google Scholar 

  • Park H-W, Kim S-T, Sancar A, Deisenhofer J (1995) Crystal structure of DNA photolyase from Escherichia coli. Science 268:1866–1872

    Article  CAS  PubMed  Google Scholar 

  • Parrilli E, Giuliani M, Marino G, Tutino ML (2010) Influence of production process design on inclusion bodies protein: the case of an Antarctic flavohemoglobin. Microb Cell Factories. doi:10.1186/1475-2859-9-19

    Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi:10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  • Sancar GB (1990) DNA photolyases: physical properties, action mechanism, and roles in dark repair. Mutat Res 236:147–160

    Article  CAS  PubMed  Google Scholar 

  • Sancar A (2003) Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 103:2203–2237

    Article  CAS  PubMed  Google Scholar 

  • Sancar A, Sancar GB (1984) Escherichia coli DNA photolyase is a flavoprotein. J Mol Biol 172:223–227

    Article  CAS  PubMed  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385. doi:10.1093/nar/gkg520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selby CP, Sancar A (2006) A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc Natl Acad Sci USA 103:17696–17700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selby CP, Sancar A (2012) The second chromophore in Drosophila photolyase/cryptochrome family photoreceptors. Biochemistry 51:167–171. doi:10.1021/bi201536w

    Article  CAS  PubMed  Google Scholar 

  • Sheridan PP, Panasik N, Coombs JM, Brenchley JE (2000) Approaches for deciphering the structural basis of low temperature enzyme activity. Biochim Biophys Acta (Protein Struct Mol Enzymol) 1543:417–433. doi:10.1016/s0167-4838(00)00237-5

    Article  CAS  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433. doi:10.1146/annurev.biochem.75.103004.142723

    Article  CAS  PubMed  Google Scholar 

  • Soding J (2005) Protein homology detection by HMM–HMM comparison. Bioinformatics 21:951–960. doi:10.1093/bioinformatics/bti125

    Article  PubMed  Google Scholar 

  • Stanley RJ (2001) Advances in flavin and flavoprotein optical spectroscopy. Antioxid Redox Signal 3:847–866

    Article  CAS  PubMed  Google Scholar 

  • Stanley RJ, Siddiqui MS (2001) A Stark spectroscopic study of N(3)-methyl, N(10)-isobutyl-7,8-dimethylisoalloxazine in nonpolar low-temperature glasses: experiment and comparison with calculations. J Phys Chem A 105:11001–11008

    Article  CAS  Google Scholar 

  • Tamada T et al (1997) Crystal structure of DNA photolyase from Anacystis nidulans. Nat Struct Biol 4:887–891

    Article  CAS  PubMed  Google Scholar 

  • Thiagarajan V, Byrdin M, Eker APM, Muller P, Brettel K (2011) Kinetics of cyclobutane thymine dimer splitting by DNA photolyase directly monitored in the UV. Proc Natl Acad Sci USA 108:9402–9407. doi:10.1073/pnas.1101026108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas T, Cavicchioli R (1998) Archaeal cold-adapted proteins: structural and evolutionary analysis of the elongation factor 2 proteins from psychrophilic, mesophilic and thermophilic methanogens. FEBS Lett 439:281–286. doi:10.1016/s0014-5793(98)01375-1

    Article  CAS  PubMed  Google Scholar 

  • Tina KG, Bhadra R, Srinivasan N (2007) PIC: protein interactions calculator. Nucleic Acids Res 35:W473–W476. doi:10.1093/nar/gkm423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Jorns MS (1989) Reconstitution of Escherichia coli DNA photolyase with various folate derivatives. Biochemistry 28:1148–1152

    Article  CAS  PubMed  Google Scholar 

  • Willey JM, Sherwood L, Woolverton C, Woolverton CJ (2008) Prescott, Harley, and Klein’s microbiology. McGraw-Hill, New York

    Google Scholar 

  • Yang K, Stanley RJ (2006) Differential distortion of substrate occurs when it binds to DNA photolyase: a 2-aminopurine study. Biochemistry 45:11239–11245

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Matsika S, Stanley RJ (2007) 6MAP, a fluorescent adenine analogue, is a probe of base flipping by DNA photolyase. J Phys Chem B 111:10615–10625

    Article  CAS  PubMed  Google Scholar 

  • Yasui A, Eker APM, Yasuhira S, Yajima H, Kobayashi T, Takao M, Oikawa A (1994) A new class of DNA photolyases present in various organisms including aplacental mammals. EMBO J 13:6143–6151

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank Mark Olsen and Cephalon for the donation of the Agilent HPLC. We also want to acknowledge Dr. Georges Feller, Dr. Aurora Martinez, Dr. Yvonne Gindt, and Dr. Peter S. Kessler for helpful discussions. The AnPL expression plasmid was a generous gift of Prof. A. Sancar, UNC Chapel Hill. S.M. and R.J.S. acknowledge support from NASA Exobiology Grant NNX13AH33G. This research was supported in part by the NSF Grant CHE-0847855. A.R. received support from NSF-REU supplement to CHE-0847855.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Stanley.

Additional information

Communicated by L. Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

792_2017_953_MOESM1_ESM.docx

Supplementary material 1 The SI includes buffer recipes, cloning, purification and harvesting protocols, photoreduction, and repair assay information. SI Figs. 1–11 include relative disorder probabilities and 3D homology structures for other PLs not discussed in the main text, HPLC analyses of cofactors and repair, absorption spectra, and SDS-PAGE analysis of the rCpPL-MBP fusion and rCpPL(S) system. Table SI-1 includes a calculation of FMN cofactor content (DOCX 11008 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munshi, S., Rajamoorthi, A. & Stanley, R.J. Characterization of a cold-adapted DNA photolyase from C. psychrerythraea 34H. Extremophiles 21, 919–932 (2017). https://doi.org/10.1007/s00792-017-0953-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-017-0953-z

Keywords

Navigation