Skip to main content
Log in

Unexplored Brazilian oceanic island host high salt tolerant biosurfactant-producing bacterial strains

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

We aimed to isolate biosurfactant-producing bacteria in high salt conditions from uncontaminated soils on the Brazilian oceanic island, Trindade. Blood agar medium was used for the isolation of presumptive biosurfactant-producing bacteria. Confirmation and measurements of biosurfactant production were made using an oil-spreading method. The isolates were identified by fatty acid profiles and partial 16S rRNA gene sequence analysis. A total of 14 isolates obtained from the 12 soil samples were found to produce biosurfactants. Among them, two isolates stood out as being able to produce biosurfactant that is increasingly active in solutions containing up to 175 g L−1 NaCl. These high salt tolerant biosurfactant producers are affiliated to different species of the genus Bacillus. Soil organic matter showed positive correlation with the number of biosurfactant-producing bacteria isolated from our different sampling sites. The applied approach successfully recovered and identified biosurfactant-producing bacteria from non-contaminated soils. Due to the elevated salt tolerance, as well as their capacity to produce biosurfactants, these isolates are promising for environmental biotechnological applications, especially in the oil production chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbasi H, Hamedi MM, Lotfabad TB, Zahiri HS, Sharafi H, Masoomi F, Moosavi-Movahedi AA, Ortiz A, Amanlou M, Noghabi KA (2012) Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant. J Biosci Bioeng 113(2):211–219. doi:10.1016/j.jbiosc.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  • Abdou M, Carnegie A, Mathews SG, McCarthy K, O’Keefe M, Raghuramen B, Wei W, Xian CG (2011) Finding value in formation water. Oilfield Rev Spring 23(1):24–35

    Google Scholar 

  • Aislabie JM, Jordan S, Barker GM (2008) Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144:9–20. doi:10.1016/j.geoderma.2007.10.006

    Article  CAS  Google Scholar 

  • Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R (2000) Extremely halophilic Bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057

    Article  PubMed Central  PubMed  Google Scholar 

  • Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation. Bioresour Technol 51(1):1–12. doi:10.1016/0960-8524(94)00101-6

    Article  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87(2):427–444. doi:10.1007/s00253-010-2589-0

    Article  CAS  PubMed  Google Scholar 

  • Bharali P, Das S, Konwar BK, Thakur AJ (2011) Crude biosurfactant from thermophilic Alcaligenes faecalis: feasibility in petro-spill bioremediation. Int Biodeterior Biodegradation 65:682–690. doi:10.1016/j.ibiod.2011.04.001

    Article  CAS  Google Scholar 

  • Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69(6):3280–3287. doi:10.1128/AEM.69.6.3280-3287.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boniek D, Figueiredo D, Pylro VS, Duarte GF (2010) Characterization of bacterial strains capable of desulphurisation in soil and sediment samples from Antarctica. Extremophiles 14(5):475–481. doi:10.1007/s00792-010-0326-3

    Article  CAS  PubMed  Google Scholar 

  • Clemente EP, Schaefer CEGR, Oliveira FS, Albuquerque FMR, Alves RV, Sá MMF, Melo VF, Corrêa GR (2009) Topossequência de solos na ilha da Trindade, Atlântico Sul. Rev Bras Ciênc Solo 33:1357–1371. doi:10.1590/S0100-06832009000500028

    Article  CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum-oil bio-degradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum oil contaminated soil from North-East India. Bioresour Technol 98:1339–1345. doi:10.1016/j.biortech.2006.05.032

    Article  CAS  PubMed  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61(1):47–64

    PubMed Central  CAS  PubMed  Google Scholar 

  • Farias ME, Revale S, Mancini E, Ordonez O, Turjanski A, Cortez N, Vazquez MP (2011) Genome sequence of Sphingomonas sp. S17, isolated from an alkaline, hyperarsenic, and hypersaline volcano-associated lake at high altitude in the Argentinean Puna. J Bacteriol 193:3686–3687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fox SL, Bala GA (2000) Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates. Bioresour Technol 75:235–240. doi:10.1016/S0960-8524(00)00059-6

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755. doi:10.1093/bioinformatics/17.8.754

    Article  CAS  PubMed  Google Scholar 

  • James SR, Burton HR, McMeekin TA, Mancuso CA (1994) Seasonal abundance of Halomonas meridian, Halomonas suglaciescola, Flavobacterium gondowanense and Flavobacterium salegens in four Antarctic lakes. Antarct Sci 6:325–332

    Article  Google Scholar 

  • Kunitsky C, Osterhout G, Sasser M (2006) Identification of microorganisms using fatty acid methyl ester (FAME) analysis and the MIDI Sherlock® microbial identification system. In: Miller MJ (ed) Encyclopedia of rapid microbiological methods, vol 3. Hardcover, pp 480

  • Kunte HJ (2012) Osmoregulation in halophilic bacteria. Extremophiles. Encyclopedia of Life Support (EOLSS) 2:263–277

    Google Scholar 

  • Lima TMS, Procópio LC, Brandão FD, Leão BA, Tótola MR, Borges AC (2011a) Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms. Bioresour Technol 102(3):2957–2964. doi:10.1016/j.biortech.2010.09.109

    Article  CAS  PubMed  Google Scholar 

  • Lima TMS, Procópio LC, Brandão FD, Carvalho AMX, Tótola MR, Borges AC (2011b) Biodegradability of bacterial surfactants. Biodegradation 22(3):585–592. doi:10.1007/s10532-010-9431-3

    Article  CAS  PubMed  Google Scholar 

  • Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104:11436–11440. doi:10.1073/pnas.0611525104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maneerat S, Nitoda T, Kanzak H, Kawai F (2005) Bile acids are new products of a marine bacterium, Myroides sp. strain SM1. Appl Microbiol Biotechnol 67(5):679–683. doi:10.1007/s00253-004-1777-1

    Article  CAS  PubMed  Google Scholar 

  • Moore E, Arnscheidt A, Krüger A, Strömpl C, Mau M (2004) Simplified protocols for the preparation of genomic DNA from bacterial cultures. Mol Microb Ecol Man Second Edit 1(01):3–18

    Google Scholar 

  • Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure-function relationship of lipopeptide biosurfactants. Biochim Biophys Acta 1488(3):211–218

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515. doi:10.1016/j.tibtech.2006.09.005

    Article  CAS  PubMed  Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Kochupappy T, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci 94:736–774

    CAS  Google Scholar 

  • Nitschke M, Pastore GM (2002) Biossurfactantes: propriedades e Aplicações. Quim Nova 25(5):772–776. doi:10.1590/S0100-40422002000500013

    Article  CAS  Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author, Evolutionary Biology Centre, Uppsala University, Sweden

  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654. doi:10.3390/ijms12010633

    Article  PubMed Central  PubMed  Google Scholar 

  • Paulay G (1994) Biodiversity on oceanic islands—Its origin and extinction. Am Zool 34(1):134–144. doi:10.1093/icb/34.1.134

    Google Scholar 

  • Peters W (1991) Peritrophic membranes. Springer, New York

    Google Scholar 

  • Pylro VS, Roesch LF, Ortega JM, doAmaral AM, Tótola MR, Hirsch PR, Rosado AS, Góes-Neto A, daCostadaSilva AL, Rosa CA, Morais DK, Andreote FD, Duarte GF, de Melo IS, Seldin L, Lambais MR, Hungria M, Peixoto RS, Kruger RH, Tsai SM, Azevedo V, Brazilian Microbiome Project Organization Committee (2014) Brazilian microbiome project: revealing the unexplored microbial diversity—challenges and prospects. Microb Ecol 67(2):237–241. doi:10.1007/s00248-013-0302-4

    Article  PubMed  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49(1):1–7

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saimmai A, Tani A, Sobhon V, Maneerat S (2012) Mangrove sediment, a new source of potential biosurfactant-producing bacteria. Ann Microbiol 62(4):1669–1679. doi:10.1007/s13213-012-0424-9

    Article  CAS  Google Scholar 

  • Sharma MK, Shah DO (1989) Use of surfactants in oil recovery. In Donaldson EC, Chilingarian GV Enhanced oil recovery II process and operations. The Fu Yen (ed), Elsevier, New York, pp 253-315

  • Sharma S, Singh P, Raj M, Chadha BS, Saini HS (2009) Aqueus phase partitioning of hexachlorocyclohexane (HCH) isomers by biosurfactant produced by Pseudomonas aeruginosa WH-2. J Hazard Mater 171(1–3):1178–1182. doi:10.1016/j.jhazmat.2009.06.116

    Article  CAS  PubMed  Google Scholar 

  • Shavandi M, Mohebali G, Haddadi A, Shakarami H, Nuhi A (2011) Emulsification potential of a newly isolated biosurfactant––producing bacterium, Rhodococcus sp. strain TA6. Colloids Surf B Biointerfaces 82(2):477–482. doi:10.1016/j.colsurfb.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: part 2. Application Aspects Biotechnol Adv 25:99–121. doi:10.1016/j.biotechadv.2006.10.004

    Article  CAS  Google Scholar 

  • Soberón-Chávez G, Maier RM (2011) Biosurfactants: a General Overview. In: Soberón-Chávez G (ed) Biosurfactants. Springer, Berlin, pp 1–11

    Chapter  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teixeira LC, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 4(8):989–1001. doi:10.1038/ismej.2010.35

    Article  PubMed  Google Scholar 

  • Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix assisted laser desortion ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68(12):6210–6219. doi:10.1128/AEM.68.12.6210-6219.2002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilde JE, Linton SM, Greenaway P (2004) Dietary assimilation and the digestive strategy of the omnivorous anomuran land crab Birgus latro (Coenobitidae). J Comp Physiol B 174:299–308. doi:10.1007/s00360-004-0415-7

    Article  CAS  PubMed  Google Scholar 

  • Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, Mcinerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56:339–347. doi:10.1016/j.mimet.2003.11.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Brazilian Navy and Captain Rodrigo Otoch Chaves for the logistic support while collecting samples, and providing the essential structure to sample transportation and storage, and Dr. Marc Redmile-Gordon (Centre for Sustainable Soils and Grassland Systems, Rothamsted Research, UK) for critical comments and review of the written English in the manuscript. CNPq grant 405544/2012-0 (PROTRINDADE), FAPEMIG and CAPES (PROEX) funded this work. This work is also supported by the Brazilian Microbiome Project (http://brmicrobiome.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Satler Pylro.

Additional information

Communicated by M. da Costa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, F.S.P., Pylro, V.S., Fernandes, P.L. et al. Unexplored Brazilian oceanic island host high salt tolerant biosurfactant-producing bacterial strains. Extremophiles 19, 561–572 (2015). https://doi.org/10.1007/s00792-015-0740-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0740-7

Keywords

Navigation