Skip to main content
Log in

Dissection of key determinants of cleavage activity in signal peptidase III (SPaseIII) PibD

  • Special Issue: Original Paper
  • 10th International Congress on Extremophiles
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

In Archaea, type IV prepilins and prearchaellins are processed by designated signal peptidase III (SPaseIII) prior to their incorporation into pili and the archaellum, respectively. These peptidases belong to the family of integral membrane aspartic acid proteases that contain two essential aspartate residues of which the second aspartate is located in a conserved GxGD motif. To this group also bacterial type IV prepilin peptidases, Alzheimer disease-related secretases, signal peptide peptidases and signal peptide peptidase-like proteases in humans belong. Here we have performed detailed in vivo analyses to understand the cleavage activity of PibD, SPaseIII from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Using an already established in vivo heterologous system cleavage assay, we could successfully identify the key amino acid residues essential for catalysis of PibD. Furthermore, in trans complementation of a pibD S. acidocaldarius deletion mutant with PibD variants having substituted key amino acids has consolidated our observations of the importance of these residues in catalysis. Based on our data, we propose to re-define class III peptidases/type IV prepilin/prearchaellin peptidases as GxHyD group (rather than GxGD) of proteases [Hy-hydrophobic amino acid].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albers SV, Pohlschroder M (2009) Diversity of archaeal type IV pilin-like structures. Extremophiles 13(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Albers SV, Szabo Z, Driessen AJ (2003) Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J Bacteriol 185(13):3918–3925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bardy SL, Jarrell KF (2002) FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. FEMS Microbiol Lett 208(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Bardy SL, Jarrell KF (2003) Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae. Mol Microbiol 50(4):1339–1347

    Article  CAS  PubMed  Google Scholar 

  • Berkner S, Grogan D, Albers SV, Lipps G (2007) Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. Nucleic Acids Res 35(12):e88

    Article  PubMed Central  PubMed  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84(1):54–68

    Article  CAS  PubMed  Google Scholar 

  • Craig L, Li J (2008) Type IV pili: paradoxes in form and function. Curr Opin Struc Biol 18(2):267–277

    Article  CAS  Google Scholar 

  • de Bentzmann S, Aurouze M, Ball G, Filloux A (2006) FppA, a novel Pseudomonas aeruginosa prepilin peptidase involved in assembly of type IVb pili. J Bacteriol 188(13):4851–4860

    Article  PubMed Central  PubMed  Google Scholar 

  • Fluhrer R, Steiner H, Haass C (2009) Intramembrane proteolysis by signal peptide peptidases: a comparative discussion of GXGD-type aspartyl proteases. J Biol Chem 284(21):13975–13979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frols S, Ajon M, Wagner M, Teichmann D, Zolghadr B, Folea M, Boekema EJ, Driessen AJ, Schleper C, Albers SV (2008) UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol Microbiol 70(4):938–952

    Article  PubMed  Google Scholar 

  • Golde TE, Wolfe MS, Greenbaum DC (2009) Signal peptide peptidases: a family of intramembrane-cleaving proteases that cleave type 2 transmembrane proteins. Sem Cell Dev Biol 20(2):225–230

    Article  CAS  Google Scholar 

  • Hansen JK, Forest KT (2006) Type IV pilin structures: insights on shared architecture, fiber assembly, receptor binding and type II secretion. J Mol Microbiol Biotech 11((3–5)):192–207

    Article  CAS  Google Scholar 

  • Henche AL, Ghosh A, Yu X, Jeske T, Egelman E, Albers SV (2012) Structure and function of the adhesive type IV pilus of Sulfolobus acidocaldarius. Environ Microbiol 14(12):3188–3202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu J, Xue Y, Lee S, Ha Y (2011) The crystal structure of GXGD membrane protease FlaK. Nature 475(7357):528–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • LaPointe CF, Taylor RK (2000) The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases. J Biol Chem 275(2):1502–1510

    Article  CAS  PubMed  Google Scholar 

  • Lassak K, Ghosh A, Albers SV (2012) Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures. Res Microbiol 163(9–10):630–644

    Article  CAS  PubMed  Google Scholar 

  • Ng SY, VanDyke DJ, Chaban B, Wu J, Nosaka Y, Aizawa S, Jarrell KF (2009) Different minimal signal peptide lengths recognized by the archaeal prepilin-like peptidases FlaK and PibD. J Bacteriol 191(21):6732–6740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pearl L, Blundell T (1984) The active site of aspartic proteinases. FEBS Lett 174(1):96–101

    Article  CAS  PubMed  Google Scholar 

  • Pepe JC, Lory S (1998) Amino acid substitutions in PilD, a bifunctional enzyme of Pseusomonas aeruginosa. Effect on leader peptidase and N-methyltransferase activities in vitro and in vivo. J Biol Chem 273(30):19120–19129

    Article  CAS  PubMed  Google Scholar 

  • Pohlschroder M, Ghosh A, Tripepi M, Albers SV (2011) Archaeal type IV pilus-like structures–evolutionarily conserved prokaryotic surface organelles. Curr Opin Microbiol 14(3):357–363

    Article  CAS  PubMed  Google Scholar 

  • Strom MS, Bergman P, Lory S (1993) Identification of active-site cysteines in the conserved domain of PilD, the bifunctional type IV pilin leader peptidase/N-methyltransferase of Pseudomonas aeruginosa. J Biol Chem 268(21):15788–15794

    CAS  PubMed  Google Scholar 

  • Szabo Z, Albers SV, Driessen AJ (2006) Active-site residues in the type IV prepilin peptidase homologue PibD from the archaeon Sulfolobus solfataricus. J Bacterio 188(4):1437–1443

    Article  CAS  Google Scholar 

  • Szabo Z, Stahl AO, Albers SV, Kissinger JC, Driessen AJ, Pohlschroder M (2007) Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases. J Bacteriol 189(3):772–778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tomita T, Iwatsubo T (2013) Structural biology of presenilins and signal peptide peptidases. J Biol Chem 288(21):14673–14680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tripepi M, Imam S, Pohlschroder M (2010) Haloferax volcanii flagella are required for motility but are not involved in PibD-dependent surface adhesion. J Bacteriol 192(12):3093–3102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voss M, Schroder B, Fluhrer R (2013) Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. Biochim Biophysica Acta 1828(12):2828–2839

    Article  CAS  Google Scholar 

  • Wagner M, van Wolferen M, Wagner A, Lassak K, Meyer BH, Reimann J, Albers SV (2012) Versatile Genetic Tool Box for the Crenarchaeote Sulfolobus acidocaldarius. Frontiers Microbiology 3:214

    Google Scholar 

  • Wolfe MS (2010) Structure, mechanism and inhibition of gamma-secretase and presenilin-like proteases. Biological chemistry 391(8):839–847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolfe MS (2013) Toward the structure of presenilin/gamma-secretase and presenilin homologs. Biochim Biophys Acta 1828(12):2886–2897

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Andreas Klingl for assistance in electron microscopy and Prof. Uwe-G. Maier for allocation of the electron microscopic facilities. A.K. was supported by the LOEWE Research Centre for Synthetic Microbiology (Synmikro). A. L. H. was supported by the German Research Council within the framework of the Collaborative Research Center 987 “Microbial Diversity in Environmental Signal Response”. M. v. W. was supported by a grant from the German Research Council AL1206/3-1 and SVA received intramural funds from the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhrajyoti Ghosh or Sonja-Verena Albers.

Additional information

Communicated by M. W. W. Adams.

This article is part of a special issue based on the 10th International Congress on Extremophiles held in Saint Petersburg, Russia, September 7–11, 2014.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21,889 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henche, AL., van Wolferen, M., Ghosh, A. et al. Dissection of key determinants of cleavage activity in signal peptidase III (SPaseIII) PibD. Extremophiles 18, 905–913 (2014). https://doi.org/10.1007/s00792-014-0675-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0675-4

Keywords

Navigation