Skip to main content
Log in

Thermococcus kodakarensis has two functional PCNA homologs but only one is required for viability

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Proliferating cell nuclear antigen (PCNA) monomers assemble to form a ring-shaped clamp complex that encircles duplex DNA. PCNA binding to other proteins tethers them to the DNA providing contacts and interactions for many other enzymes essential for DNA metabolic processes. Most eukarya and euryarchaea have only one PCNA homolog but Thermococcus kodakarensis uniquely has two, designated PCNA1 and PCNA2, encoded by TK0535 and TK0582, respectively. Here, we establish that both PCNA1 and PCNA2 form homotrimers that stimulate DNA synthesis by archaeal DNA polymerases B and D and ATP hydrolysis by the replication factor C complex. In exponentially growing cells, PCNA1 is abundant and present at an ~100-fold higher concentration than PCNA2 monomers. Deletion of TK0582 (PCNA2) had no detectable effects on viability or growth whereas repeated attempts to construct a T. kodakarensis strain with TK0535 (PCNA1) deleted were unsuccessful. The implications of these observations for PCNA1 function and the origin of the two PCNA-encoding genes in T. kodakarensis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PolB:

DNA polymerase B

PolD:

DNA polymerase D

PCNA:

Proliferating cell nuclear antigen

RFC:

Replication factor C

References

  • Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakaraensis sp nov, a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp KOD1. Archaea 1:263–267

    Article  PubMed  CAS  Google Scholar 

  • Berthon J, Cortez D, Forterre P (2008) Genomic context analysis in Archaea suggests previously unrecognized links between DNA replication and translation. Genome Biol 9:R71

    Article  PubMed  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  PubMed  CAS  Google Scholar 

  • Cann IK, Ishino S, Yuasa M, Daiyasu H, Toh H, Ishino Y (2001) Biochemical analysis of replication factor C from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 183:2614–2623

    Article  PubMed  CAS  Google Scholar 

  • Chemnitz Galal W, Pan M, Kelman Z, Hurwitz J (2012) Characterization of the DNA primase complex isolated from the archaeon, Thermococcus kodakaraensis. J Biol Chem 287:16209–16219

    Article  PubMed  CAS  Google Scholar 

  • Chia N, Cann I, Olsen GJ (2010) Evolution of DNA replication protein complexes in eukaryotes and archaea. PLoS ONE 5:e10866

    Article  PubMed  Google Scholar 

  • Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363

    Article  PubMed  CAS  Google Scholar 

  • Hileman TH, Santangelo TJ (2012) Genetics techniques for Thermococcus kodakarensis. Front Microbiol 3:195

    Article  PubMed  Google Scholar 

  • Indiani C, O’Donnell M (2006) The replication clamp-loading machine at work in the three domains of life. Nat Rev Mol Cell Biol 7:751–761

    Article  PubMed  CAS  Google Scholar 

  • Ishino Y, Ishino S (2012) Rapid progress of DNA replication studies in Archaea, the third domain of life. Sci China Life Sci 55:386–403

    Article  PubMed  CAS  Google Scholar 

  • Ishino S, Fujino S, Tomita H, Ogino H, Takao K, Daiyasu H, Kanai T, Atomi H, Ishino Y (2011) Biochemical and genetical analyses of the three mcm genes from the hyperthermophilic archaeon, Thermococcus kodakarensis. Genes Cells 16:1176–1189

    Article  PubMed  CAS  Google Scholar 

  • Jeruzalmi D, O’Donnell M, Kuriyan J (2002) Clamp loaders and sliding clamps. Curr Opin Struct Biol 12:217–224

    Article  PubMed  CAS  Google Scholar 

  • Kelch BA, Makino DL, O’Donnell M, Kuriyan J (2012) Clamp loader ATPases and the evolution of DNA replication machinery. BMC Biol 10:34

    Article  PubMed  CAS  Google Scholar 

  • Kelman Z, Hurwitz J (2000) A unique organization of the protein subunits of the DNA polymerase clamp loader in the archaeon Methanobacterium thermoautotrophicum ΔH. J Biol Chem 275:7327–7336

    Article  PubMed  CAS  Google Scholar 

  • Kelman Z, O’Donnell M (1995) Structural and functional similarities of prokaryotic and eukaryotic DNA polymerase sliding clamps. Nucleic Acids Res 23:3613–3620

    Article  PubMed  CAS  Google Scholar 

  • Kuba Y, Ishino S, Yamagami T, Tokuhara M, Kanai T, Fujikane R, Daiyasu H, Atomi H, Ishino Y (2012) Comparative analyses of the two proliferating cell nuclear antigens from the hyperthermophilic archaeon, Thermococcus kodakarensis. Genes Cells 17:923–937

    Article  PubMed  CAS  Google Scholar 

  • Ladner JE, Pan M, Hurwitz J, Kelman Z (2011) Crystal structures of two active proliferating cell nuclear antigens (PCNAs) encoded by Thermococcus kodakaraensis. Proc Natl Acad Sci USA 108:2711–2716

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Santangelo TJ, Čuboňová L, Reeve JN, Kelman Z (2010) Affinity purification of an archaeal DNA replication protein network. MBio 1:e00221-00210

    Article  Google Scholar 

  • MacNeill SA (2010) Structure and function of the GINS complex, a key component of the eukaryotic replisome. Biochem J 425:489–500

    Article  PubMed  CAS  Google Scholar 

  • Naryzhny SN, Zhao H, Lee H (2005) Proliferating cell nuclear antigen (PCNA) may function as a double homotrimer complex in the mammalian cell. J Biol Chem 280:13888–13894

    Article  PubMed  CAS  Google Scholar 

  • Pan M, Kelman LM, Kelman Z (2011a) The archaeal PCNA proteins. Biochem Soc Trans 39:20–24

    Article  PubMed  CAS  Google Scholar 

  • Pan M, Santangelo TJ, Li Z, Reeve JN, Kelman Z (2011b) Thermococcus kodakarensis encodes three MCM homologs but only one is essential. Nucleic Acids Res 39:9671–9680

    Article  PubMed  CAS  Google Scholar 

  • Santangelo TJ, Reeve JN (2010) Genetic tools and manipulations of the hyperthermophilic heterotrophic archaeon Thermococcus kodakarensis. In: Horikoshi K (ed) Extremophiles handbook. Springer, Japan

  • Santangelo TJ, Cubonova L, James CL, Reeve JN (2007) TFB1 or TFB2 is sufficient for Thermococcus kodakaraensis viability and for basal transcription in vitro. J Mol Biol 367:344–357

    Article  PubMed  CAS  Google Scholar 

  • Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 18:331–340

    Article  PubMed  CAS  Google Scholar 

  • Tagashira K, Fukuda W, Matsubara M, Kanai T, Atomi H, Imanaka T (2013) Genetic studies on the virus-like regions in the genome of hyperthermophilic archaeon, Thermococcus kodakarensis. Extremophiles 17:153–160

    Article  PubMed  Google Scholar 

  • Turner JL (1998) The use of the DNA sliding clamp in E. coli replication—how the clamp loader put clamps onto DNA and how it takes them off. Cornell University Medical College, New York

    Google Scholar 

  • Vivona JB, Kelman Z (2003) The diverse spectrum of sliding clamp interacting proteins. FEBS Lett 546:167–172

    Article  PubMed  CAS  Google Scholar 

  • Yao NY, O’Donnell M (2012) The RFC clamp loader: structure and function. Subcell Biochem 62:259–279

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant MCB-0815646 from National Science Foundation to ZK, and grants GM073336 to TJS, GM53185 to JNR and TJS and GH034559 to JH from the National Institutes of Health. Certain commercial materials, instruments, and equipment are identified in this paper to specify the experimental procedure as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that the materials, instruments, or equipment identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi Kelman.

Additional information

Communicated by H. Atomi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 469 kb)

Supplementary material 2 (PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, M., Santangelo, T.J., Čuboňová, Ľ. et al. Thermococcus kodakarensis has two functional PCNA homologs but only one is required for viability. Extremophiles 17, 453–461 (2013). https://doi.org/10.1007/s00792-013-0526-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0526-8

Keywords

Navigation