Skip to main content
Log in

Overexpression and characterization of a thermostable trehalose synthase from Meiothermus ruber

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

A thermostable trehalose synthase (TreS) gene from Meiothermus ruber CBS-01 was cloned and overexpressed in Escherichia coli. The purified recombinant TreS could utilize maltose to produce trehalose, and showed an optimum pH and temperature of 6.5 and 50°C, respectively. Kinetic analysis showed that the enzyme had a twofold higher catalytic efficiency (k cat/K m) for maltose than for trehalose, indicating maltose as the preferred substrate. The TreS also had a weak hydrolytic property with glucose as the byproduct, and glucose was a strong competitive inhibitor of the enzyme. The maximum production of trehalose by the enzyme reached 65% at 20°C. The most importantly the enzyme could maintain very high activity (above 90%) at pH 4.0–8.0 and 60°C 5 h. These results provided that the stable TreS was suitable for the industrial production of trehalose from maltose in a one-step reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109

    Article  PubMed  CAS  Google Scholar 

  • Cardoso FS, Castro RF, Borges N, Santos H (2007) Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response. Microbiology 153:270–280

    Article  CAS  PubMed  Google Scholar 

  • Chen YS, Lee GC, Shaw JF (2006) Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. J Agric Food Chem 54:7098–8104

    Article  CAS  PubMed  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organism: the role of trehalose. Science 223:701–703

    Article  CAS  PubMed  Google Scholar 

  • Elbein AD, Pan YT, Pastuazak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17–27

    Article  Google Scholar 

  • Giæver HM, Styrvold OB, Kaasen I, Strøm AR (1988) Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170:2841–2849

    PubMed  Google Scholar 

  • Koh S, Kim J, Shin HJ, Lee D, Bae J, Kim D, Lee DS (2003) Mechanistic study of the intramolecular conversion of maltose to trehalose by Thermus caldophilus GK24 trehalose synthase. Carbohydr Res 338:1339–1343

    Article  CAS  PubMed  Google Scholar 

  • Kouril T, Zaparty M, Marrero J, Brinkmann H, Siebers B (2008) A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway. Arch Microbiol 190:355–369

    Article  CAS  PubMed  Google Scholar 

  • Lederer E (1976) Cord factor and related trehalose esters. Chem Phys Lipids 16:92–106

    Article  Google Scholar 

  • Lee JH, Lee KH, Kim CG, Lee SY, Kim GJ, Park YH, Chung SO (2005) Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose. Appl Microbiol Biotechnol 68:213–219

    Article  CAS  PubMed  Google Scholar 

  • MacGregor EA, Janecek S, Svensson B (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim Biophys Acta 1546:1–20

    CAS  PubMed  Google Scholar 

  • Makihara F, Tsuzuki M, Sato K, Masuda S, Nagashima KV, Abo M, Okubo A (2005) Role of trehalose synthesis pathways in salt tolerance mechanism of Rhodobacter sphaeroides f. sp. denitrificans IL106. Arch Microbiol 184:56–65

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto T, Nakano M, Nakada T, Chaen H, Fukuda S, Sugimoto T, Kurimoto M, Tsujisaka Y (1996a) Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48. Biosci Biotechnol Biochem 60:640–644

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto T, Nakada T, Chaen H, Fukuda S, Sugimoto T, Kurimoto M, Tsujisaka Y (1996b) Purification and characterization of a thermostable trehalose synthase from Thermus aquaticus. Biosci Biotechnol Biochem 60:853–859

    Google Scholar 

  • Pan YT, Edavana VK, Jourdian WJ, Edmondson R, Carroll JD, Pastuszak I, Elbein AD (2004) Trehalose synthase of Mycobacterium smegmatis: purification, cloning, expression, and properties of the enzyme. Eur J Biochem 271:4259–4269

    Article  CAS  PubMed  Google Scholar 

  • Pan YT, Carroll JD, Asano N, Pastuszak I, Edavana VK, Elbein AD (2008) Trehalose synthase converts glycogen to trehalose. FEBS J 275:3408–3420

    Article  CAS  PubMed  Google Scholar 

  • Reinders A, Bürckert N, Hohmamm S, Thevelein JM, Boller T, Wiemken A, de Virgilio C (1997) Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol 24:687–695

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, NY, USA

  • Satpathya GR, Töröka Z, Balia R, Dwyrea DM, Littlea E, Walkera NJ, Tablina F, Crowea JH, Tsvetkovaa NM (2004) Loading red blood cells with trehalose: a step towards biostabilization. Cryobiology 49:123–136

    Article  CAS  Google Scholar 

  • Schiraldi C, di Lernia I, de Rose M (2002) Trehalose production: exploiting novel approaches. Trends biotechnol 20:421–425

    Google Scholar 

  • Silva Z, Alarico S, Nobre A, Horlacher R, Marrugg J, Boos W, Mingote AI, da Costa MS (2003) Osmotic adaptation of Thermus thermophilus RQ-1: a lesson from a mutant deficient in the synthesis of trehalose. J Bacteriol 185:5943–5952

    Article  CAS  PubMed  Google Scholar 

  • Thevelein JM (1984) Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42–59

    CAS  PubMed  Google Scholar 

  • Tsusaki K, Nishimoto T, Nakada T, Kubota M, Chaen H, Sugimoto T, Kurimoto M (1996) Cloning and sequencing of trehalose synthase gene from Pimelobacter sp. R48. Biochim Biophys Acta 1290:1–3

    PubMed  Google Scholar 

  • Tsusaki K, Nishimoto T, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1997) Cloning and sequencing of trehalose synthase gene from Thermus aquaticus ATCC 33923. Biochim Biophys Acta 1334:28–32

    CAS  PubMed  Google Scholar 

  • Wang JH, Tsai MY, Chen JJ, Lee GC, Shaw JF (2007) Role of the C-terminal domain of Thermus thermophilus trehalose synthase in the thermophilicity, thermostability, and efficient production of trehalose. J Agric Food Chem 55:3435–3443

    Article  CAS  PubMed  Google Scholar 

  • Wei YT, Zhu QX, Luo ZF, Lu FS, Chen FZ, Wang QY, Huang K, Meng JZ, Wang R, Huang RB (2004) Cloning, expression and identification of a new trehalose synthase gene from Thermobifida fusca genome. Acta Biochim Biophys Sin 36:477–484

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Zhang J, Wei D, Wang Y, Chen X, Xing L, Li M (2008) Isolation and identification of a thermophilic strain producing trehalose synthase from geothermal water in China. Biosci Biotechnol Biochem 72:2019–2024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Tianjin Natural Science Foundation (No. 06YFJZJC02100), and National Innovative Experiment Project to University Students (No. 081005509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingchun Li.

Additional information

Communicated by H. Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Wei, D., Zhang, J. et al. Overexpression and characterization of a thermostable trehalose synthase from Meiothermus ruber . Extremophiles 14, 1–8 (2010). https://doi.org/10.1007/s00792-009-0281-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-009-0281-z

Keywords

Navigation