Skip to main content
Log in

The Exiguobacterium genus: biodiversity and biogeography

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Bacteria of the genus Exiguobacterium are low G + C, Gram-positive facultative anaerobes that have been repeatedly isolated from ancient Siberian permafrost. In addition, Exiguobacterium spp. have been isolated from markedly diverse sources, including Greenland glacial ice, hot springs at Yellowstone National Park, the rhizosphere of plants, and the environment of food processing plants. Strains of this hereto little known bacterium that have been retrieved from such different (and often extreme) environments are worthy of attention as they are likely to be specifically adapted to such environments and to carry variations in the genome which may correspond to psychrophilic and thermophilic adaptations. However, comparative genomic investigations of Exiguobacterium spp. from different sources have been limited. In this study, we employed different molecular approaches for the comparative analysis of 24 isolates from markedly diverse environments including ancient Siberian permafrost and hot springs at Yellowstone National Park. Pulsed-field gel electrophoresis (PFGE) with I-CeuI (an intron-encoded endonuclease), AscI and NotI were optimized for the determination of genomic fingerprints of nuclease-producing isolates. The application of a DNA macroarray for 82 putative stress-response genes yielded strain-specific hybridization profiles. Cluster analyses of 16S rRNA gene sequence data, PFGE I-CeuI restriction patterns and hybridization profiles suggested that Exiguobacterium strains formed two distinct divisions that generally agreed with temperature ranges for growth. With few exceptions (e.g., Greenland ice isolate GIC31), psychrotrophic and thermophilic isolates belonged to different divisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Anderson CR, Cook GM (2004) Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Curr Microbiol 48:341–347

    Article  PubMed  CAS  Google Scholar 

  • Bogdanova ES, Bass IA, Minakhin LS, Petrova MA, Mindlin SZ, Volodin AA, Kalyaeva ES, Tiedje JM, Hobman JL, Brown NL, Nikiforov VG (1998) Horizontal spread of mer operons among Gram-positive bacteria in natural environments. Microbiology 144:609–620

    Article  PubMed  CAS  Google Scholar 

  • Bogdanova E, Minakhin L, Bass I, Volodin A, Hobman JL, Nikiforov V (2001) Class II broad-spectrum mercury resistance transposons in Gram-positive bacteria from natural environments. Res Microbiol 152:503–514

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi P, Shivaji S (2006) Exiguobacterium indicum sp nov., a psychrophilic bacterium from the Hamta glacier of the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 56:2765–2770

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi P, Prabahar V, Manorama R, Pindi PK, Bhadra B, Begum Z, Shivaji S (2008) Exiguobacterium soli sp nov., a psychrophilic bacterium from the McMurdo Dry Valleys, Antarctica. Int J Syst Evol Microbiol 58:2447–2453

    Article  PubMed  CAS  Google Scholar 

  • Collins MD, Kroppenstedt RM (1983) Lipid-composition as a guide to the classification of some coryneform bacteria-containing an A4-alpha type peptidoglycan. Syst Appl Microbiol 4:95–104

    CAS  Google Scholar 

  • Collins MD, Lund BM, Farrow JAE, Schleifer KH (1983) Chemotaxonomic study of an alkaliphilic bacterium, Exiguobacterium aurantiacum gen nov., sp. nov. J Gen Microbiol 129:2037–2042

    CAS  Google Scholar 

  • Corkill JE, Graham R, Hart CA, Stubbs S (2000) Pulsed-field gel electrophoresis of degradation-sensitive DNAs from Clostridium difficile PCR ribotype 1 strains. J Clin Microbiol 38:2791–2792

    PubMed  CAS  Google Scholar 

  • Crapart S, Fardeau ML, Cayol JL, Thomas P, Sery C, Ollivier B, Combet-Blanc Y (2007) Exiguobacterium profundum sp nov., a moderately thermophilic, lactic acid-producing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 57:287–292

    Article  PubMed  CAS  Google Scholar 

  • Farrow JAE, Wallbanks S, Collins MD (1994) Phylogenetic interrelationships of round-spore-forming bacilli containing cell-walls based on lysine and the non-spore-forming genera Caryophanon, Exiguobacterium, Kurthia, and Planococcus. Int J Syst Bacteriol 44:74–82

    Article  PubMed  CAS  Google Scholar 

  • Fruhling A, Schumann P, Hippe H, Straubler B, Stackebrandt E (2002) Exiguobacterium undae sp nov. and Exiguobacterium antarcticum sp. nov. Int J Syst Evol Microbiol 52:1171–1176

    Article  PubMed  CAS  Google Scholar 

  • Gibson JR, Sutherland K, Owen RJ (1994) Inhibition of DNase activity in PFGE analysis of DNA from Campylobacter jejuni. Lett Appl Microbiol 19:357–358

    Article  PubMed  CAS  Google Scholar 

  • Hara I, Ichise N, Kojima K, Kondo H, Ohgiya S, Matsuyama H, Yumoto I (2007) Relationship between the size of the bottleneck 15 angstrom from iron in the main channel and the reactivity of catalase corresponding to the molecular size of substrates. Biochemistry 46:11–22

    Article  PubMed  CAS  Google Scholar 

  • Higgins DG, Sharp PM (1988) Clustal—a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    Article  PubMed  CAS  Google Scholar 

  • Hwang BY, Kim JH, Kim J, Kim BG (2005) Screening of Exigubacterium acetylicum from soil samples showing enantioselective and alkalitolerant esterase activity. Biotechnol Bioprocess Eng 10:367–371

    Article  CAS  Google Scholar 

  • Ito K (2005) Ribosome-based protein folding systems are structurally divergent but functionally universal across biological kingdoms. Mol Microbiol 57:313–317

    Article  PubMed  CAS  Google Scholar 

  • Jeffries CD, Holtman DF, Guse DG (1957) Rapid method for determining the activity of microorganisms on nucleic acids. J Bacteriol 73:590–591

    PubMed  CAS  Google Scholar 

  • Kasana RC, Yadav SK (2007) Isolation of a psychrotrophic Exiguobacterium sp. SKPB5 (MTCC 7803) and characterization of its alkaline protease. Curr Microbiol 54:224–229

    Article  PubMed  CAS  Google Scholar 

  • Kim IG, Lee MH, Jung SY, Song JJ, Oh TK, Yoon JH (2005) Exiguobacterium aestuarii sp nov. and Exiguobacterium marinum sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55:885–889

    Article  PubMed  CAS  Google Scholar 

  • King GM, Stetzenbach LD, Klima-Comba A (2005) Analysis of cultivable airborne bacteria from an altitude gradient on Kilauea and Mauna Loa Volcanoes (Hawaii). In: ASM general 105th meeting, ASM Press, Atlanta, GA, pp N-094

  • Klaassen CHW, van Haren HA, Horrevorts AM (2002) Molecular fingerprinting of Clostridium difficile isolates: Pulsed-field gel electrophoresis versus amplified fragment length polymorphism. J Clin Microbiol 40:101–104

    Article  PubMed  CAS  Google Scholar 

  • Knudston KE, Haas EJ, Iwen PC, Ramaley WC, Ramaley RF (2001) Characterization of a Gram-positive, non-spore-forming Exiguobacterium-like organism isolated from a Western Colorado (USA) hot spring. In: ASM general 101th meeting, ASM Press, Orlando, FL, pp I-92

  • Kumar A, Singh V, Kumar R (2006) Characterization of an alkaliphile, Exiguobacterium sp. and it’s application in bioremediation. In: International conference on extremophiles, Brest, France, p L89

  • Liu SL, Schryvers AB, Sanderson KE, Johnston RN (1999) Bacterial phylogenetic clusters revealed by genome structure. J Bacteriol 181:6747–6755

    PubMed  CAS  Google Scholar 

  • Lopez L, Pozo C, Rodelas B, Calvo C, Juarez B, Martinez-Toledo MV, Gonzalez-Lopez J (2005) Identification of bacteria isolated from an oligotrophic lake with pesticide removal capacities. Ecotoxicology 14:299–312

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Cortes A, Schumann P, Pukall R, Stackebrandt E (2006) Exiguobacterium mexicanum sp nov. and Exiguobacterium artemiae sp. nov., isolated from the brine shrimp Artemia franciscana. Syst Appl Microbiol 29:183–190

    Article  PubMed  CAS  Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174

    Article  PubMed  CAS  Google Scholar 

  • Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213

    Article  PubMed  CAS  Google Scholar 

  • Newnham E, Chang N, Taylor DE (1996) Expanded genomic map of Campylobacter jejuni UA580 and localization of 23S ribosomal rRNA genes by I-CeuI restriction endonuclease digestion. FEMS Microbiol Lett 142:223–229

    Article  PubMed  CAS  Google Scholar 

  • Okeke BC, Laymon J, Oji C, Crenshaw S (2007) Rapid bioreduction of hexavalent chromium in water by Exiguobacterium sp. GS1. In: ASM general 107th meeting, ASM Press, Toronto, ON, Canada, pp Q-199

  • Pattanapipitpaisal P, Mabbett AN, Finlay JA, Beswick AJ, Paterson-Beedle M, Essa A, Wright J, Tolley MR, Badar U, Ahmed N, Hobman JL, Brown NL, Macaskie LE (2002) Reduction of Cr(VI) and bioaccumulation of chromium by Gram-positive and Gram-negative microorganisms not previously exposed to Cr-stress. Environ Technol 23:731–745

    Article  PubMed  CAS  Google Scholar 

  • Petrova MA, Mindlin SZ, Gorlenko ZM, Kalyaeva ES, Soina VS, Bogdanova ES (2002) Mercury-resistant bacteria from permafrost sediments and prospects for their use in comparative studies of mercury resistance determinants. Russ J Genet 38:1330–1334

    Article  CAS  Google Scholar 

  • Ponder MA, Gilmour SJ, Bergholz PW, Mindock CA, Hollingsworth R, Thomashow MF, Tiedje JM (2005) Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Mcirobiol Ecol 53:103–115

    Article  CAS  Google Scholar 

  • Qiu YH, Kathariou S, Lubman DM (2006) Proteomic analysis of cold adaptation in a Siberian permafrost bacterium—Exiguobacterium sibiricum 255–15 by two-dimensional liquid separation coupled with mass spectrometry. Proteomics 6:5221–5233

    Article  PubMed  CAS  Google Scholar 

  • Regha K, Satapathy AK, Ray MK (2005) RecD plays an essential function during growth at low temperature in the Antarctic bacterium Pseudomonas syringae Lz4W. Genetics 170:1473–1484

    Article  PubMed  CAS  Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues DF, Tiedje JM (2007) Multi-locus real-time PCR for quantitation of bacteria in the environment reveals Exiguobacterium to be prevalent in permafrost. FEMS Mcirobiol Ecol 59:489–499

    Article  CAS  Google Scholar 

  • Rodrigues DF, Goris J, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM (2006) Characterization of Exiguobacterium isolates from the Siberian permafrost Description of Exiguobacterium sibiricum sp. nov. Extremophiles 10:285–294

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues DF, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC Genomics 9:547

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer 3 on the WWW for general users and for biologist programmers. Bioinformatics methods and protocols: methods in molecular biology. In: Krawetz S, Misener S (eds). Humana Press, Totowa, NJ, pp 365–386

  • Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Suga S, Koyama N (2000) Purification and properties of a novel azide-sensitive ATPase of Exiguobacterium aurantiacum. Arch Microbiol 173:200–205

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Haruki M, Takano K, Morikawa M, Kanaya S (2004) Possible involvement of an FKBP family member protein from a psychrotrophic bacterium Shewanella sp. SIB1 in cold-adaptation. Eur J Biochem 271:1372–1381

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Uma S, Jadhav RS, Kumar GS, Shivaji S, Ray HK (1999) A RNA polymerase with transcriptional activity at 0 degrees C from the Antarctic bacterium Pseudomonas syringae. FEBS Lett 453:313–317

    Article  PubMed  CAS  Google Scholar 

  • Usuda Y, Kawasaki H, Shimaoka M, Utagawa T (1998) Molecular characterization of guanosine kinase gene from a facultative alkaliphile, Exiguobacterium aurantiacum ATCC 35652. Biochim Biophys Acta-Gene Struct Expr 1442:373–379

    CAS  Google Scholar 

  • Vishnivetskaya TA, Kathariou S (2005) Putative transposases conserved in Exiguobacterium isolates from ancient Siberian permafrost and from contemporary surface habitats. Appl Environ Microbiol 71:6954–6962

    Article  PubMed  CAS  Google Scholar 

  • Vishnivetskaya TA, Ramaley R, Rodrigues DF, Tiedje JM, Kathariou S (2005) Exiguobacterium from frozen subsurface sediments (Siberian permafrost) and from other sources have growth temperature ranges reflective of the environmental thermocline of their origin. In: The joint international symposia for subsurface microbiology (ISSM 2005) and environmental biogeochemistry (ISEB XVII), Jackson Hole, WY, p 254

  • Vishnivetskaya TA, Petrova MA, Urbance J, Ponder M, Moyer CL, Gilichinsky DA, Tiedje JM (2006) Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods. Astrobiology 6:400–414

    Article  PubMed  CAS  Google Scholar 

  • Vishnivetskaya TA, Siletzky R, Jefferies N, Tiedje JM, Kathariou S (2007) Effect of low temperature and culture media on the growth and freeze-thawing tolerance of Exiguobacterium strains. Cryobiology 54:234–240

    Article  PubMed  CAS  Google Scholar 

  • Vishnivetskaya T, Podar M, Kathariou S, Tiedje JM (2008) Exiguobacterium: the psychrophilic vs the thermophilic lifestyle. In: The 3th international conference on polar and alpine microbiology, Banff, Canada, pp S4–S5

  • Wada M, Yoshizumi A, Furukawa Y, Kawabata H, Ueda M, Takagi H, Nakamori S (2004) Cloning and overexpression of the Exiguobacterium sp. F42 gene encoding a new short chain dehydrogenase, which catalyzes the stereoselective reduction of ethyl 3-oxo-3-(2-thienyl)propanoate to ethyl (S)-3-hydroxy-3-(2-thienyl)propanoate. Biosci Biotechnol Biochem 68:1481–1488

    Article  PubMed  CAS  Google Scholar 

  • Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glockner FO, Rossello-Mora R (2008) The All-Species Living Tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250

    Article  PubMed  CAS  Google Scholar 

  • Yumoto I, Hishinuma-Narisawa M, Hirota K, Shingyo T, Takebe F, Nodasaka Y, Matsuyama H, Hara I (2004) Exiguobacterium oxidotolerans sp nov., a novel alkaliphile exhibiting high catalase activity. Int J Syst Evol Microbiol 54:2013–2017

    Article  PubMed  CAS  Google Scholar 

  • Zheng SP, Ponder MA, Shih JY, Tiedje JM, Thomashow MF, Lubman DM (2007) A proteomic analysis of Psychrobacter arcticus 273-4 adaptation to low temperature and salinity using a 2-D liquid mapping approach. Electrophoresis 28:467–488

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to R. Ramaley, V. Miteva, A. Sessitch, M. A. Petrova, V. S. Soina, G. King, for providing Exiguobacterium isolates and S. Tiquia for γ-Proteobacteria isolate. We thank R. M. Siletzky for laboratory assistance in portions of the study. This study was supported by NASA Astrobiology Institute (Grant # NCC2-1274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana A. Vishnivetskaya.

Additional information

Communicated by T. Matsunaga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1.(DOC 345 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vishnivetskaya, T.A., Kathariou, S. & Tiedje, J.M. The Exiguobacterium genus: biodiversity and biogeography. Extremophiles 13, 541–555 (2009). https://doi.org/10.1007/s00792-009-0243-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-009-0243-5

Keywords

Navigation