Skip to main content
Log in

Evidence that the xylanase activity from Sulfolobus solfataricus Oα is encoded by the endoglucanase precursor gene (sso1354) and characterization of the associated cellulase activity

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Sulfolobus solfataricus strain Oα was previously isolated for its ability to grow on minimal medium supplemented with xylan as a carbon source. The strain exhibited thermostable xylanase activity but several attempts to identify the gene encoding for the activity failed. Further studies showed that the xylanase displayed activity on carboxymethylcellulose (CMC) and the new activity was characterized. It exhibited an optimal temperature and pH of 95°C and 3.5, respectively, and a half-life of 53 min at 95°C. The enzyme, which was demonstrated to be glycosylated, hydrolyzed CMC in an endo-manner releasing cellobiose and other cello-oligomers. Analysis of the tryptic fragments by tandem mass spectrometry led to identification of the endoglucanase precursor, encoded by the sso1354 gene, as the protein possessing dual activity. The efficiency of the SSO1354 protein in degrading cellulosic and hemicellulosic fractions contained in agronomic residues was tested at low pH and high temperature. Cellulose and xylan were degraded to glucose and xylose at 90°C, pH 4 by an enzyme mix consisting of SSO1354 and additional glycosyl hydrolases from S. solfataricus Oα. Given its role in saccharification processes requiring high temperatures and acidic environments, SSO1354 represents an interesting candidate for the utilization of agro-industrial waste for fuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CMC:

Carboxymethylcellulose

RBB-xylan:

Remazol brilliant blue R-d-xylan

AZO-CMC:

AZO-carboxymethylcellulose

PAS:

Periodic acid Schiff

ConA:

Concanavalin-A

TX-extract:

Membrane proteins extract

MS/MS:

Tandem mass spectrometry

References

  • Andreaus L, Campos R, Gübitz G, Cavaco-Paulo A (2000) Influence of cellulases on indigo backstaining. Text Res J 70:628–632

    Article  CAS  Google Scholar 

  • Bauer MW, Driskill LE, Calen W, Snead MA, Mathur E, Kelly RM (1999) An endoglucanase, EglA, from the hyperthemophilic archeon Pyrococcus furiosus hydrolyzes β-1, 4 bonds in mixed-linkage (1–3), (1–4)-β-d-glucans and cellulose. J Bacteriol 181:284–290

    PubMed  CAS  Google Scholar 

  • Bedford MR (1995) Mechanism of action and potential environmental benefits from the use of feed enzymes. Anim Feed Sci Technol 53:145–155

    Article  CAS  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  PubMed  CAS  Google Scholar 

  • Biely P, Mislovicova D, Toman R (1985) Soluble chromogenic substrates for the assay of endo-1, 4-beta-xylanases and endo-1, 4-beta-glucanases. Anal Biochem 144:142–146

    Article  PubMed  CAS  Google Scholar 

  • Bok JD, Yernool DA, Eveleigh DE (1998) Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Appl Environ Microbiol 64:4774–4781

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bragger JM, Daniel RM, Coolbear T, Morgan HW (1989) Very stable enzymes from extremely thermophilic archaebacteria and eubacteria. Appl Microbiol Biotechnol 31:556–561

    Article  CAS  Google Scholar 

  • Cannio R, Di Prizito N, Rossi M, Morana A (2004) A xylan-degrading strain of Sulfolobus solfataricus: isolation and characterization of the xylanase activity. Extremophiles 8:117–124

    Article  PubMed  CAS  Google Scholar 

  • Contreras-Moreira B, Bates PA (2002) Domain fishing: a first step in protein comparative modelling. Bioinformatics 18:1141–1142

    Article  PubMed  CAS  Google Scholar 

  • Coutinho P, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert HJ, Davies G, Henrissat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge, pp 3–12

    Google Scholar 

  • De Rosa M, Gambacorta A, Bu’lock JD (1975) Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. J Gen Microbiol 86:156–164

    PubMed  Google Scholar 

  • Dey D, Hinge J, Shendye A, Rao M (1992) Purification and properties of extracellular endoxylanases from an alkalophilic thermophilic Bacillus sp. Can J Microbiol 38:436–442

    Article  CAS  Google Scholar 

  • Elferink MG, Albers SV, Konings WN, Driessen AJ (2001) Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters. Mol Microbiol 39:1494–1503

    Article  PubMed  CAS  Google Scholar 

  • Gerwig GJ, Kamerling JP, Vliegenthart JF, Morag E, Lamed R, Bayer EA (1993) The nature of the carbohydrate-peptide linkage region in glycoproteins from the cellulosomes of Clostridium thermocellum and Bacteroides cellulosolvens. J Biol Chem 268:26956–26960

    PubMed  CAS  Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    Article  PubMed  CAS  Google Scholar 

  • Haros M, Rosell CM, Benedito C (2002) Improvement of flour quality through carbohydrases treatment during wheat tempering. J Agric Food Chem 50:4126–4130

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Krauss G, Cottaz S, Driguez H, Lipps G (2005) A highly acid-stable and thermostable endo-beta-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem J 385:581–588

    Article  PubMed  CAS  Google Scholar 

  • Hui JP, White TC, Thibault P (2002) Identification of glycan structure and glycosylation sites in cellobiohydrolase II and endoglucanases I and II from Trichoderma reesei. Glycobiology 12:837–849

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Ito J, Kawano A, Makino T, Kondo H, Karita S, Sakka K, Ohmiya K (2000) Purification, characterization, and molecular cloning of acidophilic xylanase from Penicillium sp. 40. Biosci Biotechnol Biochem 64:1230–1237

    Article  PubMed  CAS  Google Scholar 

  • Kohring S, Wiegel J, Mayer F (1990) Subunit composition and glycosidic activities of the cellulase complex from Clostridium thermocellum JW20. Appl Environ Microbiol 56:3798–3804

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee SF, Forsberg CW, Rattray JB (1987) Purification and characterization of two endoxylanases from Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 53:644–650

    PubMed  CAS  Google Scholar 

  • Liebl W, Ruile P, Bronnenmeier K, Reidel K, Lottspeich F, Greif I (1996) Analysis of a Thermotoga maritima DNA fragment encoding two similar thermostable cellulases, CelA and CelB, and characterization of the recombinant enzymes. Microbiology 142:2533–2542

    Article  PubMed  CAS  Google Scholar 

  • Limauro D, Cannio R, Fiorentino G, Rossi M, Bartolucci S (2001) Identification and molecular characterization of an endoglucanase gene, celS, from the extremely thermophilic archaeon Sulfolobus solfataricus. Extremophiles 5:213–219

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  PubMed  CAS  Google Scholar 

  • Lower BH, Kennelly PJ (2002) The membrane-associated protein-serine/threonine kinase from Sulfolobus solfataricus is a glycoprotein. J Bacteriol 184:2614–2619

    Article  PubMed  CAS  Google Scholar 

  • Miettinen-Oinonen A, Londesborough J, Joutsjoki V, Lantto R, Vehmaanperä J (2004) Three cellulases from Melanocarpus albomyces for textile treatment at neutral pH. Enzyme Microb Technol 34:332–341

    Article  CAS  Google Scholar 

  • Morana A, Paris O, Maurelli L, Rossi M, Cannio R (2007) Gene cloning and expression in E. coli of a bi-functional β-D-xylosidase/α-L-arabinosidase from Sulfolobus solfataricus involved in xylan degradation. Extremophiles 11:123–132

    Article  PubMed  CAS  Google Scholar 

  • Mortz E, Krogh TN, Vorum H, Görg A (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1:1359–1363

    Article  PubMed  CAS  Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  • Nucci R, Moracci M, Vaccaro C, Vespa N, Rossi M (1993) Exo-glucosidase activity and substrate specificity of the beta-glycosidase isolated from the extreme thermophile Sulfolobus solfataricus. Biotechnol Appl Biochem 17:239–250

    PubMed  CAS  Google Scholar 

  • Ratanachomsri U, Sriprang R, Sornlek W, Buaban B, Champreda V, Tanapongpipat S, Eurwilaichitr L (2006) Thermostable xylanase from Marasmius sp.: purification and characterization. J Biochem Mol Biol 39:105–110

    PubMed  CAS  Google Scholar 

  • Schwarz WH, Bronnenmeier K, Grabmitz F, Staudenbauer WL (1987) Activity staining of cellulases in polyacrylamide gels containing mixed linkage beta-glucans. Anal Biochem 164:72–77

    Article  PubMed  CAS  Google Scholar 

  • Schwarz WH, Adelsberger H, Jauris S, Hertel C, Funk B, Staudenbauer WL (1990) Xylan degradation by the thermophile Clostridium stercorarium: cloning and expression of xylanase, β-d-xylosidase, and α-l-arabinofuranosidase genes in Escherichia coli. Biochem Biophys Res Commun 170:368–374

    Article  PubMed  CAS  Google Scholar 

  • Segrest JP, Jackson RL (1972) Molecular weight determination of glycoproteins by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Methods Enzymol 28:54–63

    Article  Google Scholar 

  • She Q, Sing RH, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A et al (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840

    Article  PubMed  CAS  Google Scholar 

  • Sindhu I, Chhibber S, Capalash N, Sharma P (2006) Production of cellulase-free xylanase from Bacillus megaterium by solid state fermentation for biobleaching of pulp. Curr Microbiol 53:167–172

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (1991) Plant and cell architecture. In: Taiz L, Zeiger E (eds) Plant physiology. Pearson Benjamin Cummings, Redwood City, pp 9–25

    Google Scholar 

  • Viikari L, Kantelinen A, Sundquist J, Linko M (1994) Xylanases in bleaching: from an idea to the industry. FEMS Microbiol Rev 13:335–350

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Fiorella Conte for her helpful assistance with the preparation of genomic DNA and PCR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Morana.

Additional information

Communicated by L. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurelli, L., Giovane, A., Esposito, A. et al. Evidence that the xylanase activity from Sulfolobus solfataricus Oα is encoded by the endoglucanase precursor gene (sso1354) and characterization of the associated cellulase activity. Extremophiles 12, 689–700 (2008). https://doi.org/10.1007/s00792-008-0175-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-008-0175-5

Keywords

Navigation