Skip to main content
Log in

Effect of growth temperature on ether lipid biochemistry in Archaeoglobus fulgidus

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The archaea are distinguished by their unique isoprenoid ether lipids, which typically consist of the sn-2,3-diphytanylglycerol diether or sn-2,3-dibiphytanyldiglycerol tetraether core modified with a variety of polar headgroups. However, many hyperthermophilic archaea also synthesize tetraether lipids with up to four pentacyclic rings per 40-carbon chain, presumably to improve membrane thermal stability at temperatures up to∼110 °C. This study aimed to correlate the ratio of tetraether to diether core lipid, as well as the presence of pentacyclic groups in tetraether lipids, with growth temperature for the hyperthermophilic archaeon, Archaeoglobus fulgidus. Analysis of the membrane core lipids of A. fulgidus using APCI–MS analysis revealed that the tetraether-to-diether lipid ratio increases from 0.3 ± 0.1 for cultures grown at 70°C to 0.9 ± 0.1 for cultures grown at 89°C. Thin-layer chromatography (TLC) followed by APCI–MS analysis provided evidence for no more than one pentacycle in the hydrocarbon chains of tetraether lipid from cultures grown at 70°C and up to 2 pentacycles in the tetraether lipid from cultures grown at higher temperatures. Analysis of the polar lipid extract using TLC and negative-ion ESI–MS suggested the presence of diether and tetraether phospholipids with inositol, glycosyl, and ethanolamine headgroup chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TLC:

Thin-layer chromatography

APCI:

Atmospheric pressure chemical ionization

ESI:

Electrospray ionization

MS:

Mass spectrometry

GLC:

Gas–liquid chromatography

HPLC:

High performance liquid chromatography

TE:

Tetraether lipid

DE:

Diether lipid

References

  • Byrdwell WC (2001) Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids 36:327–346

    Article  PubMed  CAS  Google Scholar 

  • Collins MD (1985) Analysis of Isoprenoid Quinones. Academic, Orlando

    Google Scholar 

  • De Rosa M, Esposito E, Gambacorta A, Nicolaus B, Bu’Lock JD (1980) Effects of temperature on ether lipid composition of Caldariella acidophila. Phytochemistry 19:827–831

    Article  Google Scholar 

  • Demizu K, Ohtsubo S, Kohno S, Miura I, Nishihara M, Koga Y (1992) Quantitative determination of methanogenic cells based on analysis of ether-linked glycerolipids by high-performance liquid chromatography. J Ferment Bioeng 73:135–139

    Article  CAS  Google Scholar 

  • Gabriel JL, Chong PLG (2000) Molecular modeling of archaebacterial bipolar tetraether lipid membranes. Chem Phys Lipids 105:193–200

    Article  PubMed  CAS  Google Scholar 

  • Glasgow BJ, Abduragimov AR, Yusifov TN, Gassymov OK, Horwitz J, Hubbell WL, Faull KF (1998) Characterization of the disulfide motif and secondary structure of tear lipocalins. Biochemistry 37:2215–2225

    Article  PubMed  CAS  Google Scholar 

  • Hopmans EC, Schouten S, Pancost RD, Van der Meer MTJ, Sinninghe Damste JS (2000) Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 14:585–589

    Article  PubMed  CAS  Google Scholar 

  • Kates M (1986) Techniques of lipidology: isolation, analysis, and identification of lipids. Elsevier, New York

    Google Scholar 

  • Kates M (1992) Archaebacterial lipids: structure, biosynthesis and function. Biochem Soc Symp 58:51–72

    PubMed  CAS  Google Scholar 

  • Klenk H-P, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, McNeil LK, Badger JH, Glodek A, Zhou L, Overbeek R, Gocayne JD, Weidman JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Artiach P, Kaine BP, Sykes SM, Sadow PW, D’Andrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter JC (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370

    Article  PubMed  CAS  Google Scholar 

  • Koga Y, Morii H (2005) Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci Biotech Bioch 69:2019–2034

    Article  CAS  Google Scholar 

  • Koga Y, Nishihara M, Morii H, Akagawa-Matsushita M (1993) Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. Microbiol Rev 57:164–182

    PubMed  CAS  Google Scholar 

  • Langworthy TA (1985) Lipids of Archaebacteria. In: Woese CR, Wolfe RS (eds) Archaebacteria. Academic, New York, pp 459–497

    Google Scholar 

  • Morii H, Eguchi T, Nishihara M, Kakinuma K, Konig H, Koga Y (1998) A novel ether core lipid with H-shaped C80-isoprenoid hydrocarbon chain from the hyperthermophilic methanogen Methanothermus fervidus. Biochim Biophys Acta 1390:339–345

    PubMed  CAS  Google Scholar 

  • Morii H, Koga Y (1994) Asymmetrical topology of diether- and tetraether-type polar lipids in membranes of Methanobacterium thermoautotrophicum cells. J Biol Chem 269:10492–10497

    PubMed  CAS  Google Scholar 

  • Murae T, Takamatsu Y, Muraoka R, Endoh S, Yamauchi N (2002) Facile distinction of neutral and acidic tetraether lipids in archaea membrane by halogen atom adduct ions in electrospray ionization mass spectrometry. J Mass Spectrom 37:209–215

    Article  PubMed  CAS  Google Scholar 

  • Nishihara M, Koga Y (1987) Extraction and composition of polar lipids from the archaebacterium, Methanobacterium thermoautotrophicum: effective extraction of tetraether lipids by an acidified solvent. J Biochem (Tokyo, Jpn) 101:997–1005

    CAS  Google Scholar 

  • Nishihara M, Koga Y (1991) Hydroxyarchaetidylserine and hydroxyarchaetidyl-myo-inositol in Methanosarcina barkeri: polar lipids with a new ether core portion. Biochim Biophys Acta 1082:211–217

    PubMed  CAS  Google Scholar 

  • Qui D-F, Games MPL, Xiao X-Y, Games DE, Walton TJ (1998) Application of high-performance liquid chromatography/electrospray mass spectrometry for the characterization of membrane lipids in the haloalkaliphilic archaebacterium Natronobacterium magadii. Rapid Commun Mass Sp 12:939–946

    Article  Google Scholar 

  • Qui D-F, Games MPL, Xiao X-Y, Games DE, Walton TJ (2000) Characterisation of membrane phospholipids and glycolipids from a halophilic archaebacterium by high-performance liquid chromatography/electrospray mass spectrometry. Rapid Commun Mass Sp 14:1586–1591

    Google Scholar 

  • Rohlin L, Trent JD, Salmon K, Kim U, Gunsalus RP, Liao JC (2005) Heat shock response of Archaeoglobus fulgidus. J Bacteriol 187:6046–6057

    Article  PubMed  CAS  Google Scholar 

  • Sprott GD (1992) Structures of archaebacterial membrane lipids. J Bioenerg Biomembr 24:555–566

    Article  PubMed  CAS  Google Scholar 

  • Sprott GD, Dicaire CJ, Patel GB (1994) The ether lipids of Methanosarcina mazei and other Methanosarcina species, compared by fast atom bombardment mass spectrometry. Can J Microbiol 40:837–843

    Article  CAS  Google Scholar 

  • Sprott GD, Meloche M, Richards JC (1991) Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcus jannaschii grown at different temperatures. J Bacteriol 173:3907–3910

    PubMed  CAS  Google Scholar 

  • Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236:822–824

    Article  PubMed  CAS  Google Scholar 

  • Sturt HF, Summons RE, Smith K, Elvert M, Hinrichs K-U (2003) Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Sp 18:617–628

    Article  CAS  Google Scholar 

  • Tarui M, Tanaka N, Tomura K, Ohga M, Morii H, Koga Y (2007) Lipid component parts analysis of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus. J UOEH 29:131–139

    PubMed  CAS  Google Scholar 

  • Tindall BJ, Stetter KO, Collins MD (1989) A novel, fully saturated menaquinone from the thermophilic, sulphate-reducing archaebacterium Archaeoglobus fulgidus. J Gen Microbiol 135:693–696

    CAS  Google Scholar 

  • Tornabene TG, Langworthy TA (1979) Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic archaebacteria. Science 203:51–53

    Article  PubMed  CAS  Google Scholar 

  • Trincone A, Nicolaus B, Palmieri G, Rosa MD, Huber R, Huber G, Stetter K, Gambacorta A (1992) Distribution of complex and core lipids within new hyperthermophilic members for the archaea domain. Syst Appl Microbiol 15:11–17

    CAS  Google Scholar 

  • Uda I, Sugai A, Itoh YH, Itoh Y (2004) Variation in molecular species of core lipids from the order Themoplasmales strains depends on the growth temperature. J Oleo Sci 53:399–404

    CAS  Google Scholar 

  • Watson JT (1997) Introduction to Mass Spectrometry. Lippincott-Raven, Philadelphia

    Google Scholar 

Download references

Acknowledgments

This work was supported by a NIH Metabolic Engineering Grant (5 R01 GM077627). Technical assistance, use of laboratory facilities and supplies were kindly provided by Dr. Imke Schroeder and Dr. Robert Gunsalus of the Department of Microbiology, Immunology, and Molecular Genetics at UCLA. Help with the mass spectral analyses was kindly provided by Alek Dooley and Dr. Kym Faull in the Pasarow Mass Spectrometry Laboratory at UCLA. Purchase of mass spectrometric instrumentation was made with help from the W.M. Keck Foundation and the Pasarow Family Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold G. Monbouquette.

Additional information

Communicated by F. Robb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, D., Springstead, J.R. & Monbouquette, H.G. Effect of growth temperature on ether lipid biochemistry in Archaeoglobus fulgidus . Extremophiles 12, 271–278 (2008). https://doi.org/10.1007/s00792-007-0126-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-007-0126-6

Keywords

Navigation