Skip to main content
Log in

Characterization of a thermostable cyclodextrin glucanotransferase from Pyrococcus furiosus DSM3638

  • Note
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

A gene that encodes the enzyme Pyrococcus furiosus cyclodextrin glucanotransferase (PFCGT) was cloned in Escherichia coli. PFCGT was highly expressed in recombinant E. coli after compensation for codon usage bias using the pRARE plasmid. Purified PFCGT was extremely thermostable with an optimal temperature and pH of 95°C and 5.0, respectively, retaining 97% of its activity at 100°C. Incubation at 60°C for 20 min during the purification process led to a 1.5-fold increase in enzymatic activity. A time course assay of the PFCGT reaction with starch indicated that cyclic α-1,4-glucans with DPs greater than 20 were produced at the beginning of the incubation followed by an increase in β-CD. The major final product of PFCGT cyclization was β-CD, and thus the enzyme is a β-CGTase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bibel M, Brettl C, Gosslar U, Kriegshäuser G, Liebl W (1998) Isolation and analysis of genes for amylolytic enzymes of the hyperthermophilic bacterium Thermotoga maritima. FEMS Microbiol Lett 158:9–15

    Article  PubMed  CAS  Google Scholar 

  • Dong G, Vieille C, Savchenko A, Zeikus JG (1997a) Cloning, sequencing, and expression of the gene encoding extracellular α-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl Environ Microbiol 63:3569–3576

    CAS  Google Scholar 

  • Dong G, Vieille C, Zeikus JG (1997b) Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl Environ Microbiol 63:3577–3584

    CAS  Google Scholar 

  • Kaneko T, Kato T, Nakamura N, Horikoshi K (1987) Spectrophotometric determination of cyclization activity of β-cyclodextrin-forming cyclomaltodextrin glucanotransferase. J Jpn Soc Starch Sci 34:45–48

    CAS  Google Scholar 

  • Kim YW, Lee SS, Warren RAJ, Withers SG (2004) Directed evolution of a glycosynthase from Agrobacterium sp. increases its catalytic activity dramatically and expands its substrate repertoire. J Biol Chem 279:42787–42793

    Article  PubMed  CAS  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  PubMed  CAS  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Rahman RNZA, Fujiwara S, Takagi M, Kanaya S, Imanaka T (1997) Effect of heat treatment on proper oligomeric structure formation of thermostable glutamate dehydrogenase from a hyperthermophilic archaeon. Biochem Biophys Res Commun 241:646–652

    Article  CAS  Google Scholar 

  • Rahman RNZA, Fujiwara S, Nakamura H, Takagi M, Imanaka T (1998) Ion pairs involved for maintaining a thermostable structure of glutamate dehydrogenase (GDH) from a hyperthermophilic archaeon. Biochem Biophys Res Commun 248:920–926

    Article  PubMed  CAS  Google Scholar 

  • Rashid N, Cornista J, Ezaki S, Fukui T, Atomi H, Imanaka T (2002) Characterization of an archaeal cyclodextrin glucanotransferase with a novel C-terminal domain. J Bacteriol 184:777–784

    Article  PubMed  CAS  Google Scholar 

  • Rice DW, Yip KSP, Stillman TJ, Britton KL, Fuentes A, Connerton I, Pasquo A, Acandurra R, Engel PC (1996) Insights into the molecular basis of thermal stability from the structure determination of Pyrococcus furiosus glutamate dehydrogenase. FEMS Microbiol Rev 18:105–117

    Article  PubMed  CAS  Google Scholar 

  • Rose NN, Li D, Park JT, Cha HJ, Kim MS, Kim JW, Park KH (2005) Characterization and application of a novel thermostable glucoamylase cloned from a hyperthermophilic archaeon Sulfolobus tokodaii. Food Sci Biotechnol 14:860–865

    Google Scholar 

  • Saenger W (1980) Cyclodextrin inclusion compounds in research and industry. Angew Chem Int Ed 19:344–362

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schiraldi C, Rosa MD (2002) The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol 20:515–521

    Article  PubMed  CAS  Google Scholar 

  • Schmid G (1989) Cyclodextrin glycosyltransferase production: yield enhancement by overexpression of cloned genes. Tibtech 7:244–248

    CAS  Google Scholar 

  • Schultes V, Jaenicke R (1991) Folding intermediates of hyperthermophilic D-glyceraldehyde-3-phosphate dehydrogenase from Thermotoga maritima are trapped at low temperature. FEBS Lett 290:235–238

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui MA, Fujiwara S, Takagi M, Imanaka T (1998) In vitro heat effect on heterooligomeric subunit assembly of thermostable indolepyruvate ferredoxin oxidoreductase. FEBS Lett 434:372–376

    Article  PubMed  CAS  Google Scholar 

  • Tachibana Y, Leclere MM, Fujiwara S, Takagi M, Imanaka T (1996) Cloning and expression of the α-amylase gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1, and characterization of the enzyme. J Ferment Bioeng 82:224–232

    Article  CAS  Google Scholar 

  • Tachibana Y, Kuramura A, Shirasaka N, Suzuki Y, Yamamoto T, Fujiwara S, Takagi M, Imanaka T (1999) Purification and characterization of an extremely thermostable cyclomaltodextrin glucanotransferase from a newly isolated hyperthermophilic archaeon, a Thermococcus sp. Appl Environ Microbiol 65:1991–1997

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Yang SJ, Lee HS, Park CS, Kim YR, Moon TW, Park KH (2004) Enzymatic analysis of an amylolytic enzyme from the hyperthermophilic archaeon Pyrococcus furiosus reveals its novel catalytic properties as both an α-amylase and a cyclodextrin-hydrolyzing enzyme. Appl Environ Microbiol 70:5988–5995

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank A. M. Grunden of North Carolina State University, USA, for donating the P. furiosus DSM3638 genomic DNA used in the study. This study was supported by the Marine and Extreme Genome Research Center Program, Ministry of Marine Affairs and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwan-Hwa Park.

Additional information

Communicated by K. Horikoshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, MH., Yang, SJ., Kim, JW. et al. Characterization of a thermostable cyclodextrin glucanotransferase from Pyrococcus furiosus DSM3638. Extremophiles 11, 537–541 (2007). https://doi.org/10.1007/s00792-007-0061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-007-0061-6

Keywords

Navigation