Skip to main content
Log in

A novel thermostable sulfite oxidase from Thermus thermophilus: characterization of the enzyme, gene cloning and expression in Escherichia coli

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

A novel sulfite oxidase has been identified from Thermus thermophilus AT62. Despite this enzyme showing significant amino-acid sequence homology to several bacterial and eukaryal putative and identified sulfite oxidases, the kinetic analysis, performed following the oxidation of sulfite and with ferricyanide as the electron acceptor, already pointed out major differences from representatives of bacterial and eukaryal sources. Sulfite oxidase from T. thermophilus, purified to homogeneity, is a monomeric enzyme with an apparent molecular mass of 39.1 kDa and is almost exclusively located in the periplasm fraction. The enzyme showed sulfite oxidase activity only when ferricyanide was used as electron acceptor, which is different from most of sulfite-oxidizing enzymes from several sources that use cytochrome c as co-substrate. Spectroscopic studies demonstrated that the purified sulfite oxidase has no cytochrome like domain, normally present in homologous enzymes from eukaryotic and prokaryotic sources, and for this particular feature it is similar to homologous enzyme from Arabidopsis thaliana. The identified gene was PCR amplified on T. thermophilus AT62 genome, expressed in Escherichia coli and the recombinant protein identified and characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen ID, Nielsen H, Von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  CAS  Google Scholar 

  • Bick JA, Dennis JJ, Zylstra GJ, Nowack J, Leustek T (2000) Identification of a new class of 5′-adenylyllsulfate (APS) reductases from sulfate-assimilating bacteria. J Bacteriol 182:135–142

    PubMed  CAS  Google Scholar 

  • Bray RC, Gutteridge S, Lamy MT, Wilkinson T (1983) Equilibria among different molybdenum (V)-containing species from Sulfite oxidase. Biochem J 211:227–236

    PubMed  CAS  Google Scholar 

  • Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. J Bacteriol 98:289–297

    Article  PubMed  CAS  Google Scholar 

  • Brody MS, Hille R (1999) The kinetic behavior of chicken liver Sulfite oxidase. Biochemistry 38:6668–6677

    Article  PubMed  CAS  Google Scholar 

  • Brune DC (1995) Sulphur compounds as photosynthetic electron donors. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publisher, Dordrecht pp 847–870

    Google Scholar 

  • Brüser T, Selmer T, Dahl C (2000) ‘ADP sulfurylase’ from Thiobacillus denitrificans is an adenylylsulfate:phosphate adenylyl-transferase and belongs to a new family of nucleotidyltransferases. J Biol Chem 275:1691–1698

    Article  PubMed  Google Scholar 

  • Cohen HJ, Fridovich I (1971a) Hepatic sulfite oxidase. The nature and function of the heme prosthetic groups. J Biol Chem 246:367–373

    CAS  Google Scholar 

  • Cohen HJ, Fridovich I (1971b) Hepatic sulfite oxidase. Purification and properties. J Biol Chem 246:359–366

    CAS  Google Scholar 

  • Eilers T, Schwarz G, Brinkmann H, Witt C, Richter T, Nieder J, Koch B, Hille R, Hänsch R, Mendel RR (2001) Identification and biochemical characterization of Arabidopsis thaliana Sulfite oxidase. J Biol Chem 276:46989–46994

    Article  PubMed  CAS  Google Scholar 

  • Friedrich CG (1998) Physiology and genetics of sulfur-oxidizing bacteria. Adv Microb Physiol 39:235–289

    PubMed  CAS  Google Scholar 

  • Friedrich CG, Quentmeir A, Bardischewsky F, Rother D, Kraft R, Kostka S, Prinz H (2000) Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol 182(17):4677–4687

    Article  PubMed  CAS  Google Scholar 

  • Gardlik S, Rajagopalan KV (1991) The mechanisms of inactivation of sulfite oxidase by periodate and arsenite. J Biol Chem 266:16627–16632

    PubMed  CAS  Google Scholar 

  • Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, Brinkman FSL (2005) PSORTb v.2.0: expanded prediction of bacterial proteins subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21(5):617–623

    Article  PubMed  CAS  Google Scholar 

  • Garrett RM, Rajagopalan KV (1994) Molecular cloning of rat liver Sulfite oxidase. J Biol Chem 269:272–276

    PubMed  CAS  Google Scholar 

  • Garrett RM, Rajagopalan KV (1996) Site-directed mutagenesis of recombinant sulfite oxidase. J Biol Chem 271:7387–7391

    Article  PubMed  CAS  Google Scholar 

  • Garton SD, Garrett RM, Rajagopalan KV, Johnson MK (1997) Resonance raman characterization of the molybdenum center in sulfite oxidase: identification of M=O stretching modes. J Am Chem Soc 119:2590–2591

    Article  CAS  Google Scholar 

  • Henne A, Bruggemann H, Raasch C, Wiezer A, Hartsch T, Liesegang H, Johann A, Lienard T, Gohl O, Martinez-Arias R, Jacobi C, Starkuviene V, Schlenczeck S, Dencker S, Huber R, Klenk HP, Kramer W, Merkl R, Gottschalk G, Fritz HJ (2004) The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 22(5):547–553

    Article  PubMed  CAS  Google Scholar 

  • Hensel R, Demharter W, Kandler O, Kroppenstedt RM, Stackebrandt E (1986) Chemotaxonomic and molecular-genetic studies of the genus Thermus: evidence for a phylogenetic relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus. Int J Syst Bacteriol 36:444–453

    CAS  Google Scholar 

  • Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816

    Article  PubMed  CAS  Google Scholar 

  • Hudson JA, Morgan HW, Daniel RM (1987) Numerical classification of some Thermus isolates from Icelandic hot springs. Syst Appl Microbiol 9:218–223

    Google Scholar 

  • Johnson MK, Rajagopalan KV (1977) Tryptic cleavage of rat liver sulfite oxidase. Isolation and characterization of molybdenum and heme domains. J Biol Chem 252:2017–2025

    PubMed  CAS  Google Scholar 

  • Johnson MK, Garton SD, Oku H (1997) Resonance raman as a direct probe for the catalytic mechanism of molybdenum oxotransferases. J Biol Inorg Chem 2:797–803

    Article  CAS  Google Scholar 

  • de Jong GAH, Tang JA, Bos P, de Vries S, Kuenen GJ (2000) Purification and characterization of a sulfite:cytochrome c oxidoreductase from Thiobacillus acidophilus. Mol Catal B 8:61–67

    Article  Google Scholar 

  • Kappler U, Dahl C (2001) Enzymology and molecular biology of prokaryotic sulfite oxidation. FEMS Microbiol Lett 203:1–9

    PubMed  CAS  Google Scholar 

  • Kappler U, Bennett B, Rethmeier J, Schwarz G, Deutzmann R, McEwan AG, Dahl C (2000) Sulfite:cytochrome c oxidoreductase from Thiobacillus novellus. J Biol Chem 275:13202–13212

    Article  PubMed  CAS  Google Scholar 

  • Kelly DP, Shergill JK, Lu WP, Wood AP (1997) Oxidative metabolism of inorganic sulphur compounds by bacteria. Antonie van Leeuwenhoek 71:95–107

    Article  PubMed  CAS  Google Scholar 

  • Kelly DP, McDonald IR, Wood AP (2000) Proposal for the reclassification of Thiobacillus novellus as Starkeya novella gen. nov., comb. nov., in the α-subclass of the Proteobacteria. Int J Syst Evol Microbiol 50:1797–1802

    PubMed  CAS  Google Scholar 

  • Kessler DL, Rajagopalan KV (1972) Purification and properties of sulfite oxidase from chicken liver. J Biol Chem 247:6566–6573

    PubMed  CAS  Google Scholar 

  • Kessler DL, Rajagopalan KV (1974) Hepatic sulfite oxidase. Effect of anions on interaction with Cytochrome c. Biochim Biophys Acta 370:389–398

    PubMed  CAS  Google Scholar 

  • Kisker C (2001) Sulfite oxidase. In: Messerschmidt A (ed) Handbook of metalloproteins. Wiley, New York pp 1121–1135

    Google Scholar 

  • Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, Rajagopalan KV, Enemark JH, Rees DC (1997) Molecular basis of Sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91:973–983

    Article  PubMed  CAS  Google Scholar 

  • Krasil’nikova EN, Bogdanova TI, Zakharchuk LM, Tsaplina IA, Karavaiko GI (1998) Metabolism of reduced sulphur compounds in Sulfobacillus thermosulfidooxidans strain 1269. Mikrobiologiya 67:156–164

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lyric RM, Suzuki I (1970) Enzymes involved in the metabolism of thiosulfate by Thiobacillus thioparus. I. Survey of enzymes and properties of Sulfite Cytochrome c oxidoreductase. Can J Biochem 48:334–343

    Article  PubMed  CAS  Google Scholar 

  • Munster MJ, Munster AP, Woodrow JR, Sharp RJ (1986) Isolation and preliminary taxonomic studies of Thermus strains isolated from Yellowstone National Park, USA J Gen Microbiol 132:1677–1683

    CAS  Google Scholar 

  • Pacheco A, Hazzard JT, Tollin G, Enemark JH (1999) The pH dependence of intramolecular electron transfer rates in Sulfite oxidase at high and low anion concentrations. J Biol Inorg Chem 4:390–401

    Article  PubMed  CAS  Google Scholar 

  • Pearson WR (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol 183:63–98

    PubMed  CAS  Google Scholar 

  • Raitsimring AM, Pacheco A, Enemark JH (1998) ESEEM investigation of the high pH and low pH forms of chicken liver sulfite oxidase. J Am Chem Soc 120:11263–11278

    Article  CAS  Google Scholar 

  • Saiki RK (1990) In: Innis MA, Gelfand DA, Sninski JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc, San Diego, California pp 13–20

  • Saiki T, Rimura R, Arima K (1972) Isolation and characterization of extremely thermophilic bacteria from hot springs. Agr Biol Chem 36:2357–2366

    CAS  Google Scholar 

  • Sambrock J, Fritsch EF, Maniatis T (1989) In: Ford N, Nolan C (eds) Molecular cloning—A laboratory manual. edn 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66(1):92–97

    Article  PubMed  CAS  Google Scholar 

  • Southerland WM, Toghrol F (1983) Sulfite oxidase activity in Thiobacillus novellus. J Bacteriol 156(2):941–944

    PubMed  CAS  Google Scholar 

  • Taylor BF (1994) Adenylylsulfate reductases from Thiobacilli. Methods Enzymol 243:393–400

    Article  CAS  Google Scholar 

  • Temple CA, Graf TN, Rajagopalan KV (2000) Optimization of expression of human sulfite oxidase and its molybdenum domain. Arch Biochem Biophys 383:281–287

    Article  PubMed  CAS  Google Scholar 

  • Toghrol F, Southerland WM (1983) Purification of Thiobacillus novellus sulfite oxidase. Evidence for the presence of heme and molybdenum. J Biol Chem 258:6762–6766

    PubMed  CAS  Google Scholar 

  • Trüper HG, Fisher U (1982) Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis. Phil Trans R Soc Lond B 298:529–542

    Google Scholar 

  • Zimmermann P, Laska S, Kletzin A (1999) Two modes of sulfite oxidation in the extremely thermophilic and acidophilic archaeon Acidianus ambivalens. Arch Microbiol 172:76–82

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Giuseppe Ruggiero for expert assistance with T. thermophilus cell fermentation, and Prof. José J. Moura (Universidade Nova de Lisboa) for discussions and encouragement throughout the work. This work was supported by grants from the MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca)-Decreto Direttoriale prot. n. 1105/2002, by the Centro Regionale di Competenza BioTekNet and the Eurochem S.p.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mosè Rossi.

Additional information

Communicated by K. Horikoshi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Salle, A., D’Errico, G., La Cara, F. et al. A novel thermostable sulfite oxidase from Thermus thermophilus: characterization of the enzyme, gene cloning and expression in Escherichia coli . Extremophiles 10, 587–598 (2006). https://doi.org/10.1007/s00792-006-0534-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0534-z

Keywords

Navigation