Skip to main content
Log in

A highly thermostable trehalase from the thermophilic bacterium Rhodothermus marinus

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Trehalases play a central role in the metabolism of trehalose and can be found in a wide variety of organisms. A periplasmic trehalase (α,α-trehalose glucohydrolase, EC 3.2.1.28) from the thermophilic bacterium Rhodothermus marinus was purified and the respective encoding gene was identified, cloned and overexpressed in Escherichia coli. The recombinant trehalase is a monomeric protein with a molecular mass of 59 kDa. Maximum activity was observed at 88°C and pH 6.5. The recombinant trehalase exhibited a K m of 0.16 mM and a V max of 81 μmol of trehalose (min)−1 (mg of protein)−1 at the optimal temperature for growth of R. marinus (65°C) and pH 6.5. The enzyme was highly specific for trehalose and was inhibited by glucose with a K i of 7 mM. This is the most thermostable trehalase ever characterized. Moreover, this is the first report on the identification and characterization of a trehalase from a thermophilic bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • de Aquino AC, Peixoto-Nogueira SC, Jorge JA, Terenzi HF, Polizeli ML (2005) Characterization of an acid trehalase produced by the thermotolerant fungus Rhizopus microsporus var. rhizopodiformis: Biochemical properties and immunochemical localisation. FEMS Microbiol Lett 251:169–175

    Article  PubMed  CAS  Google Scholar 

  • Berthelot K, Delmotte FM (1999) Purification and characterization of an α-glucosidase from Rhizobium sp. (Robinia pseudoacacia L.) strain USDA 4280. Appl Environ Microbiol 65:2907–2911

    PubMed  CAS  Google Scholar 

  • Bjornsdottir SH, Blondal T, Hreggvidsson GO, Eggertsson G, Petursdottir S, Hjorleifsdottir S, Thorbjarnardottir SH, Kristjansson JK (2006) Rhodothermus marinus: physiology and molecular biology. Extremophiles 10:1–16

    Article  PubMed  CAS  Google Scholar 

  • Blücher A, Karlsson EN, Holst O (2000) Substrate-dependent production and some properties of a thermostable α-galactosidase from Rhodothermus marinus. Biotechnol Lett 22:663–669

    Article  Google Scholar 

  • Boos W, Ehmann U, Bremer E, Middendorf A, Postma P (1987) Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J Biol Chem 262:13212–13218

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Dahlberg L, Holst O, Kristjánsson JK (1993) Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan. Appl Microbiol Biotechnol 40:63–68

    Article  CAS  Google Scholar 

  • Edman P, Begg G (1967) A protein sequenator. Eur J Biochem 1:80–91

    Article  PubMed  CAS  Google Scholar 

  • Elbein AD (1974) The metabolism of α,α-trehalose. Adv Carbohydr Chem Biochem 30:227–256

    Article  PubMed  CAS  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17–27

    Article  Google Scholar 

  • Gomes J, Steiner W (1998) Production of a high activity of an extremely thermostable β-mannanase by the thermophilic eubacterium Rhodothermus marinus, grown on locust beam gum. Biotechnol Lett 20:729–733

    Article  CAS  Google Scholar 

  • Gomes J, Gomes I, Terler K, Gubala N, Ditzelmüller G, Steiner W (2000) Optimization of culture medium and conditions for α-L-arabinofuranosidase production by the extreme thermophilic eubacterium Rhodothermus marinus. Enzyme Microb Technol 27:414–422

    Article  PubMed  CAS  Google Scholar 

  • Gomes I, Gomes J, Steiner W (2003) Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization. Bioresource Technol 90:207–214

    Article  CAS  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788

    PubMed  CAS  Google Scholar 

  • Herzog RM, Galinski EA, Trüber HG (1990) Degradation of the compatible solute trehalose in Ectothiorhodospira halochloris: isolation and characterization of trehalase. Arch Microbiol 153:600–606

    Article  CAS  Google Scholar 

  • Hiller K, Grote A, Scheer M, Münch R, Jahn D (2004) PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res 32:375–379

    Article  CAS  Google Scholar 

  • Horlacher R, Uhland K, Klein W, Ehrmann M, Boos W (1996) Characterization of a cytoplasmic trehalase of Escherichia coli. J Bacteriol 178:6250–6257

    PubMed  CAS  Google Scholar 

  • Hreggvidsson GO, Kaiste E, Holst O, Eggertsson G, Palsdottir A, Kristjánsson JK (1996) An extremely thermostable cellulase from the thermophilic eubacterium Rhodothermus marinus. Appl Environ Microbiol 62:3047–3049

    CAS  Google Scholar 

  • Im H, Henson CA (1995) Characterization of a high pI α-glucosidase from germinated barley seeds: substrate specificity subsite affinities and active-site residues. Carbohydr Res 277:145–159

    Article  CAS  Google Scholar 

  • Inagaki K, Ueno N, Tamura T, Tanaka H (2001) Purification and characterization of an acid trehalase from Acidobacterium capsulatum. J Biosci Bioeng 91:141–146

    Article  PubMed  CAS  Google Scholar 

  • Jahagirdar AP, Seligy VL (1992) A transfer membrane method for in situ detection and quantification of trehalase. Anal Biochem 202:96–99

    Article  PubMed  CAS  Google Scholar 

  • Jorge JA, Polizeli ML, Thevelein JM, Terenzi HF (1997) Trehalases and trehalose hydrolysis in fungi. FEMS Microbiol Lett 154:165–171

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki MK, Polizeli ML, Terenzi HF, Jorge JA (1996) Characterization of trehalase activities from the thermophilic fungus Scytalidium thermophilum. Biochim Biophys Acta 1291:199–205

    PubMed  CAS  Google Scholar 

  • Kalf GF, Rieder SV (1958) The purification and properties of trehalase. J Biol Chem 230:691–698

    PubMed  CAS  Google Scholar 

  • Lopez MF, Torrey JG (1985) Purification and properties of trehalase in Frankia ArI3. Arch Microbiol 143:209–215

    Article  CAS  Google Scholar 

  • Manelius A, Dahlberg L, Holst O (1994) Some properties of a thermostable β-xylosidase from Rhodothermus marinus. Appl Biochem Biotechnol 44:39–48

    Article  CAS  Google Scholar 

  • Manjunath P, Shenoy BC, Raghavendra Roa MR (1983) Fungal glucoamylases. J Appl Biochem 5:235–260

    PubMed  CAS  Google Scholar 

  • Mansure JJ, Silva JT, Panek AD (1992) Characterization of trehalase in Rhodotorula rubra. Biochem Int 28:693–700

    PubMed  CAS  Google Scholar 

  • Marmur LJ (1961) A procedure for the isolation of deoxy-ribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Murakami S, Yagami M, Suzuki Y (1998) Purification and some properties of an extremely thermostable trehalose-hydrolyzing α-glucosidase from Bacillus flavocaldarius KP1228. Starch 50:100–103

    Article  CAS  Google Scholar 

  • Nakao M, Nakayama T, Harada M, Kakudo A, Ikemoto H, Kobayashi S, Shibano Y (1994) Purification and characterization of a Bacillus sp. SAM1606 thermostable α-glucosidase with transglucosylation activity. Appl Microbiol Biotechnol 41:337–343

    Article  PubMed  CAS  Google Scholar 

  • Nunes OC, Donato MM, da Costa MS (1992) Isolation and characterization of Rhodothermus strains from S. Miguel, Azores. System Appl Microbiol 15:92–97

    Google Scholar 

  • Parrou JL, Jules M, Beltran G, François J (2005) Acid trehalase in yeast and filamentous fungi: localization, regulation and physiological function. FEMS Yeast Res 5:503–511

    Article  PubMed  CAS  Google Scholar 

  • Prasad ARS, Maheshwari R (1978) Purification and properties of trehalase from the thermophilic fungus Humicola lanuginosa. Biochim Biophys Acta 525:162–170

    PubMed  CAS  Google Scholar 

  • Robinson-Rechavi M, Alibés A, Godzik A (2006) Contribution of electrostatic interactions, compactness and quaternary structure to protein thermostability: lessons from structural genomics of Thermotoga maritima. J Mol Biol 356:547–557

    Article  PubMed  CAS  Google Scholar 

  • Saha BC, Bothast RJ (1993) Production and characteristics of an intracellular α-glucosidase from a color variant strain of Aureobasidium pullulans. Curr Microbiol 27:73–77

    Article  CAS  Google Scholar 

  • Silva Z, Borges N, Martins LO, Wait R, da Costa MS, Santos H (1999) Combined effect of the growth temperature and salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles 3:163–172

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Van Assche JA, Carlier AR (1975) Some properties of trehalase from Phycomyces blakesleeanus. Biochim Biophys Acta 391:154–161

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the European Commission Contracts QLK3-CT-2000-00640 and COOP-CT-2003-508644 and Fundação para a Ciência e a Tecnologia and FEDER, Portugal, POCI/59310/2004. We thank Winfried Boos, Konstanz, for a fruitful collaboration that led to the discovery of trehalase activity in R. marinus. M. Regalla from Analytical Services performed the N-terminal sequencing at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal. C. Jorge acknowledges a PhD grant from PRAXIS XXI (SFRH/BD/10572/2002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Santos.

Additional information

Communicated by G. Antranikian

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jorge, C.D., Sampaio, M.M., Hreggvidsson, G.Ó. et al. A highly thermostable trehalase from the thermophilic bacterium Rhodothermus marinus . Extremophiles 11, 115–122 (2007). https://doi.org/10.1007/s00792-006-0021-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0021-6

Keywords

Navigation